解答:解:(Ⅰ)由f(x)=ax
3+3x
2-6ax-11,得f′(x)=3ax
2+6x-6a,
由f′(-1)=0,即3a-6-6a=0,得a=-2.
∴f(x)=-2x
3+3x
2+12x-11,令f′(x)=-6x
2+6x+12=0,解得x=-1或x=2.
當(dāng)x∈(-2,-1),(2,3)時(shí),f′(x)<0,f(x)為減函數(shù),
當(dāng)x∈(-1,2)時(shí),f′(x)>0,f(x)為增函數(shù).
∴當(dāng)x=-1時(shí),f(x)在區(qū)間(-2,3)上有極小值,極小值為-18,
當(dāng)x=2時(shí),f(x)在區(qū)間(-2,3)上有極大值,極大值為9.
(Ⅱ)①由kx+9≤g(x),得kx≤3x
2+6x+3,當(dāng)x=0時(shí),不等式恒成立,k∈R;
當(dāng)-2≤x<0時(shí),不等式為
k≥3(x+)+6,
而
3(x+)+6=-3[(-x)+]+6≤-3×2+6=0,∴k≥0;
當(dāng)x>0時(shí),不等式為
k≤3(x+)+6,∵
3(x+)+6≥12,∴k≤12.
∴當(dāng)x≥-2時(shí),kx+9≤g(x)恒成立,則0≤k≤12.
②由f(x)≤kx+9,得kx+9≥-2x
3+3x
2+12x-11,
當(dāng)x=0時(shí),9≥-11恒成立,k∈R;當(dāng)-2≤x<0時(shí),有
k≤-2x2+3x+12-,
設(shè)
h(x)=-2x2+3x+12-=-2(x-)2+-,
當(dāng)-2≤x<0時(shí),
-2(x-)2+為增函數(shù),
-也是增函數(shù),∴h(x)≥h(-2)=8.
故要使f(x)≤kx+9在(-2,0)上恒成立,則k≤8;
由上述過程知,只要考慮0≤k≤8即可,
則當(dāng)x>0時(shí),f′(x)=-6x
2+6x+12=-6(x+1)(x-2),
在x∈(0,2]時(shí),f′(x)>0,在x∈(2,+∞)時(shí),f′(x)<0,
∴f(x)在x=2時(shí)有極大值,即f(x)在(0,+∞)上的最大值,
又f(2)=9,即f(x)≤9,而當(dāng)x>0,k≥0時(shí),kx+9≥9恒成立,
∴當(dāng)0≤k≤8時(shí),在(0,+∞)上f(x)≤kx+9恒成立.
綜上所述,0≤k≤8.