(1)若點(diǎn)A(a,b)(其中a≠b)在矩陣M=
0-1
10
對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-b,a).
(Ⅰ)求矩陣M的逆矩陣;
(Ⅱ)求曲線C:x2+y2=1在矩陣N=
0
1
2
10
所對(duì)應(yīng)變換的作用下得到的新的曲線C′的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
(Ⅰ)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位已知直線的極坐標(biāo)方程為θ=
π
4
(ρ∈R)
,它與曲線
x=2+
5
cosθ
y=1+
5
sinθ
為參數(shù))相交于兩點(diǎn)A和B,求|AB|;
(Ⅱ)已知極點(diǎn)與原點(diǎn)重合,極軸與x軸正半軸重合,若直線C1的極坐標(biāo)方程為:ρcos(θ-
π
4
)=
2
,曲線C2的參數(shù)方程為:
x=1+cosθ
y=3+sinθ
(θ為參數(shù)),試求曲線C2關(guān)于直線C1對(duì)稱的曲線的直角坐標(biāo)方程.
(3)選修4-5:不等式選講
(Ⅰ)已知函數(shù)f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求實(shí)數(shù)m的取值范圍.
(Ⅱ)已知實(shí)數(shù)x、y、z滿足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.
分析:(1)(Ⅰ)求出矩陣的行列式,從而可得矩陣M的逆矩陣;
(Ⅱ)設(shè)(x′,y′)在矩陣N=
0
1
2
10
所對(duì)應(yīng)變換的作用下的點(diǎn)為(x,y),從而可得坐標(biāo)之間的關(guān)系,代入x2+y2=1,即可得結(jié)論;
(2)(Ⅰ)求出直線和圓的直角坐標(biāo)方程、圓心到直線y=x的距離,利用垂徑定理,可得結(jié)論;
(Ⅱ)求出直線C1的直角坐標(biāo)方程;曲線C2的普通方程,從而可求曲線C2關(guān)于直線C1對(duì)稱的曲線的直角坐標(biāo)方程;
(3)(Ⅰ)條件可轉(zhuǎn)化為m≤2(|x-7|+|x+3|),由絕對(duì)值不等式的性質(zhì)可得實(shí)數(shù)m的取值范圍;
(Ⅱ)由柯西不等式可得[(
2
x)2+(
3
y)2+(
6
z)2]
[(
1
2
)2+(
1
3
)2+(
1
6
)2
]≥x+y+z,由此可得結(jié)論.
解答:解:(1)(Ⅰ)∵矩陣M=
0-1
10
,∴矩陣的行列式為
.
0-1
10
.
=1≠0
M-1=
01
-10

(Ⅱ)設(shè)(x′,y′)在矩陣N=
0
1
2
10
所對(duì)應(yīng)變換的作用下的點(diǎn)為(x,y),則
0
1
2
10
x′
y′
=
x
y
,∴
x′=y
y′=2x

代入x2+y2=1,可得4x2+y2=1;
(2)(Ⅰ)直線和圓的直角坐標(biāo)方程分別為y=x和(x-1)2+(y-2)2=5,則圓心為C(1,2),半徑R=
5

從而C到直線y=x的距離d=
|1-2|
2
=
2
2

由垂徑定理得|AB|=2
R2-d2
=3
2

(Ⅱ)直線C1的極坐標(biāo)方程為:ρcos(θ-
π
4
)=
2
,直角坐標(biāo)方程為x+y=2;曲線C2的參數(shù)方程為:
x=1+cosθ
y=3+sinθ
(θ為參數(shù)),普通方程為:(x-1)2+(y-3)2=1,圓心坐標(biāo)為(1,3),半徑為1
圓心坐標(biāo)為(1,3)關(guān)于x+y=2對(duì)稱點(diǎn)的坐標(biāo)為(1,-1),
∴曲線C2關(guān)于直線C1對(duì)稱的曲線的直角坐標(biāo)方程為(x+1)2+(y-1)2=1;
(3)(Ⅰ)已知函數(shù)f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,即m≤2(|x-7|+|x+3|)
由絕對(duì)值不等式的性質(zhì)可得2(|x-7|+|x+3|)≥2|x-7-(x+3)|=20
∴實(shí)數(shù)m的取值范圍為(-∞,20];
(Ⅱ)由柯西不等式可得[(
2
x)2+(
3
y)2+(
6
z)2]
[(
1
2
)2+(
1
3
)2+(
1
6
)2
]≥x+y+z
∵2x2+3y2+6z2=a(a>0),∴a≥(x+y+z)2,
∵x+y+z的最大值是1,∴a=1,
當(dāng)2x=3y=6z時(shí),x+y+z取最大值,∴a=1.
點(diǎn)評(píng):本題考查選修知識(shí),考查矩陣與變換,考查坐標(biāo)系與參數(shù)方程,考查不等式選講,綜合性強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)A(a,0),B(0,b),C(1,-1)(a>0,b<0)三點(diǎn)共線,則a-b的最小值等于(  )
A、4B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)P(a,b)在圓C:x2+y2=1的外部,則直線ax+by+1=0與圓C的位置關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)A(a,0),B(0,b),C(1,-l)(a>0,b<0)三點(diǎn)共線,則a-b的最小值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省泉州一中高三(下)5月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(1)若點(diǎn)A(a,b)(其中a≠b)在矩陣M=對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-b,a).
(Ⅰ)求矩陣M的逆矩陣;
(Ⅱ)求曲線C:x2+y2=1在矩陣N=所對(duì)應(yīng)變換的作用下得到的新的曲線C′的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
(Ⅰ)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位已知直線的極坐標(biāo)方程為,它與曲線為參數(shù))相交于兩點(diǎn)A和B,求|AB|;
(Ⅱ)已知極點(diǎn)與原點(diǎn)重合,極軸與x軸正半軸重合,若直線C1的極坐標(biāo)方程為:,曲線C2的參數(shù)方程為:(θ為參數(shù)),試求曲線C2關(guān)于直線C1對(duì)稱的曲線的直角坐標(biāo)方程.
(3)選修4-5:不等式選講
(Ⅰ)已知函數(shù)f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求實(shí)數(shù)m的取值范圍.
(Ⅱ)已知實(shí)數(shù)x、y、z滿足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案