3.若數(shù)列{an}滿足:a1+2a2+22a3+…+2n-1an=$\frac{{{n^2}+1}}{3}(n∈{N^*})$,則an=$\left\{\begin{array}{l}\frac{2}{3},n=1\\ \frac{2n-1}{{3×{2^{n-1}}}},n≥2\end{array}\right.$.

分析 由數(shù)列{an}滿足:a1+2a2+22a3+…+2n-1an=$\frac{{{n^2}+1}}{3}(n∈{N^*})$,得數(shù)列{an}滿足:a1+2a2+22a3+…+2n-2an-1=$\frac{{(n-1)}^{2}+1}{3}$(n≥2),作差得an=$\frac{2n-1}{3×{2}^{n-1}}$,n≥2,當(dāng)n=1時,${a}_{1}=\frac{2}{3}$.由此能求出結(jié)果.

解答 解:∵數(shù)列{an}滿足:a1+2a2+22a3+…+2n-1an=$\frac{{{n^2}+1}}{3}(n∈{N^*})$,①
∴數(shù)列{an}滿足:a1+2a2+22a3+…+2n-2an-1=$\frac{{(n-1)}^{2}+1}{3}$(n≥2),②
①-②,得:2n-1an=$\frac{{n}^{2}+1}{3}-\frac{(n-1)^{2}+1}{3}$=$\frac{2n-1}{3}$,n≥2,
∴an=$\frac{2n-1}{3×{2}^{n-1}}$,n≥2,
當(dāng)n=1時,${a}_{1}=\frac{2}{3}$.
∴an=$\left\{\begin{array}{l}\frac{2}{3},n=1\\ \frac{2n-1}{{3×{2^{n-1}}}},n≥2\end{array}\right.$.
故答案為:$\left\{\begin{array}{l}\frac{2}{3},n=1\\ \frac{2n-1}{{3×{2^{n-1}}}},n≥2\end{array}\right.$.

點評 本題考查數(shù)列的通項公式的求法,是中檔題,解題時要認(rèn)真審題,注意分類討論思想的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在一次聯(lián)考后,某校對甲、乙兩個理科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下的2×2列聯(lián)表,且已知在甲、乙兩個理科班全部110人中隨機抽取1人,成績?yōu)閮?yōu)秀的概率為$\frac{3}{11}$.
優(yōu)秀非優(yōu)秀合計
甲班10
乙班30
合計110
(1)請完成右面的列聯(lián)表,根據(jù)列聯(lián)表的數(shù)據(jù),能否有99%的把握認(rèn)為成績與班級有關(guān)系?(2)在甲、乙兩個理科班優(yōu)秀的學(xué)生中隨機抽取兩名學(xué)生,用ξ表示抽得甲班的學(xué)生人數(shù),求ξ的分布列.
參考公式和數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+c})({b+d})({a+b})({c+d})}}$
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)全集為R,集合M={x|(x+a)(x-1)≤0}(a>0),集合N={x|4x2-4x-3<0}.
(1)若M∪N={x|-2≤x<$\frac{3}{2}$},求實數(shù)a的值;
(2)若N∪(∁RM)=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知定義:在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數(shù)),則稱數(shù)列{an}為等方差數(shù)列,下列判斷:
①{(-1)n}是“等方差數(shù)列”;
②若{an}是“等方差數(shù)列”,則數(shù)列{${a}_{n}^{2}$}是等差數(shù)列;
③若{an}既是“等方差數(shù)列”,又是等差數(shù)列,則該數(shù)列是常數(shù)列;
④若{an}是“等方差數(shù)列”,則數(shù)列{akn}(k∈N*,k為常數(shù))可能也是“等方差數(shù)列”.
其中正確的結(jié)論是①②③④.(寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ln(1+x)-x,g(x)=ln2(1+x)-$\frac{x^2}{1+x}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:g(x)≤0;
(3)若不等式${(1+\frac{1}{n})^{n+a}}$≤e對任意的n∈N*都成立(其中e是自然對數(shù)的底數(shù)).求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)$f(x)=|x+\frac{1}{a}|+|x-a|(a>0)$.
(1)求證:f(x)≥2;
(2)若f(2)<4,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow a$,$\overrightarrow b$的夾角為$\frac{π}{3}$,且$|{\overrightarrow b}$|=1,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{7}$,$|{\overrightarrow a}$|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{2}$x2-mlnx.
(1)求函數(shù)f(x)的極值;
(2)若m≥1,試討論關(guān)于x的方程f(x)=x2-(m+1)x的解的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知z軸上一點N到點A(1,0,3)與點B(-1,1,-2)的距離相等,則點N的坐標(biāo)為( 。
A.(0,0,-$\frac{1}{2}$)B.(0,0,-$\frac{2}{5}$)C.(0,0,$\frac{1}{2}$)D.(0,0,$\frac{2}{5}$)

查看答案和解析>>

同步練習(xí)冊答案