15.已知向量$\overrightarrow a$,$\overrightarrow b$的夾角為$\frac{π}{3}$,且$|{\overrightarrow b}$|=1,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{7}$,$|{\overrightarrow a}$|=3.

分析 利用向量的數(shù)量積化簡求解即可.

解答 解:向量$\overrightarrow a$,$\overrightarrow b$的夾角為$\frac{π}{3}$,且$|{\overrightarrow b}$|=1,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{7}$,
可得:${\overrightarrow{a}}^{2}-4|\overrightarrow{a}||\overrightarrow|cos<\overrightarrow{a},\overrightarrow>+4{\overrightarrow}^{2}$=7,
可得$|\overrightarrow{a}{|}^{2}-2|\overrightarrow{a}|-3=0$,
解得$|{\overrightarrow a}$|=3.
故答案為:3.

點評 本題考查向量的數(shù)量積的應用,向量的夾角的求法,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.$\root{3}{2+\sqrt{3}}$•$\root{6}{7-4\sqrt{3}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.50B.50.5C.51.5D.60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若數(shù)列{an}滿足:a1+2a2+22a3+…+2n-1an=$\frac{{{n^2}+1}}{3}(n∈{N^*})$,則an=$\left\{\begin{array}{l}\frac{2}{3},n=1\\ \frac{2n-1}{{3×{2^{n-1}}}},n≥2\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知C1在直角坐標系下的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{{\sqrt{5}}}{5}t\\ y=\frac{{2\sqrt{5}}}{5}t-1\end{array}\right.(t為參數(shù))$,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,有曲線C2:ρ=2cosθ-4sinθ.
(Ⅰ)將C1的方程化為普通方程,并求出C2的直角坐標方程;
(Ⅱ)求曲線C1和C2兩交點之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設等差數(shù)列{an}的前n項和為Sn,已知${({a_7}-1)^3}+2016({a_7}-1)=-1$,${({a_{2010}}-1)^3}+2016({a_{2010}}-1)=1$,則下列結(jié)論正確的是( 。
A.S2016=2016,a2010<a7B.S2016=2016,a2010>a7
C.S2016=-2016,a2010<a7D.S2016=-2016,a2010>a7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設集合A={x|x2≤2},Z為整數(shù)集,則集合A∩Z中元素的個數(shù)是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設等差數(shù)列{an}的前n項和為Sn,且S5=a5+a6=25.
(1)求{an}的通項公式;
(2)若不等式2Sn+8n+27>(-1)nk(an+4)對所有的正整數(shù)n都成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.命題:“?x0>0,使2${\;}^{{x}_{0}}$>10”,這個命題的否定是( 。
A.?x>0,使2x>10B.?x>0,使2x≤10C.?x≤0,使2x≤10D.?x≤0,使2x>10

查看答案和解析>>

同步練習冊答案