設(shè)數(shù)列{an}的前n和為Sn,已知,,,,一般地,(n∈N*).
(1)求a4;
(2)求a2n
(3)求和:a1a2+a3a4+a5a6+…+a2n-1a2n
【答案】分析:(1)由a4=S4-S3可求
(2)當(dāng)n=2k時,(k∈N*)從而可求
(3)與(2)同理可求得:,代入可得,利用錯位相減的求和方法可求
解答:解:(1)a4=S4-S3==16; …(3分)
(2)當(dāng)n=2k時,(k∈N*),…(6分)
所以,a2n=4n(n∈N*).   …(8分)
(3)與(2)同理可求得:,…(10分)
設(shè)a1a2+a3a4+a5a6+…+a2n-1a2n=Tn,

,
相減得
所以.                          …(15分)
點(diǎn)評:本題主要考查了利用遞推公式求解數(shù)列的項,及錯位相減求數(shù)列的和,這是數(shù)列求和方法的應(yīng)用中的一個難點(diǎn),要注意掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項的和為Sna1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊答案