【題目】已知函數(shù)

(1)當時,求曲線在點處的切線方程;

2)當時,求最大的整數(shù),使得時,函數(shù)圖象上的點都在

所表示的平面區(qū)域內(nèi)(含邊界.

【答案】(1) ;(2).

【解析】試題分析:(1)代入,得到的值,再利用點斜式,即可得到切線方程;

(2)時,當時, ,設(shè),則問題等價于當時, ,再由,分分類討論,即可求解的最大值

試題解析:(1)當時, ,則,,

∴所求的切線方程為,即

(2)時,由題意得 ,當時,

,設(shè),則問題等價于

時,

時,若,則, 遞增,

故不滿足條件

時,因為為整數(shù),故,所以, 上遞增

上遞減, ,即

易知函數(shù))為遞減函數(shù),又,

所以滿足的最大整數(shù),

綜上可知,滿足條件的最大的整數(shù)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓,點是圓上一動點, 的垂直平分線與線段交于點.

(1)求點的軌跡方程;

(2)設(shè)點的軌跡為曲線,過點且斜率不為0的直線交于兩點,點關(guān)于軸的對稱點為,證明直線過定點,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,手機的功能逐漸強大,很大程度上代替了電腦、電視.為了了解某高校學(xué)生平均每天使用手機的時間是否與性別有關(guān),某調(diào)查小組隨機抽取了名男生、名女生進行為期一周的跟蹤調(diào)查,調(diào)查結(jié)果如表所示:

平均每天使用手機超過小時

平均每天使用手機不超過小時

合計

男生

女生

合計

(1)能否在犯錯誤的概率不超過的前提下認為學(xué)生使用手機的時間長短與性別有關(guān)?

(2)在這名女生中,調(diào)查小組發(fā)現(xiàn)共有人使用國產(chǎn)手機,在這人中,平均每天使用手機不超過小時的共有人.從平均每天使用手機超過小時的女生中任意選取人,求這人中使用非國產(chǎn)手機的人數(shù)的分布列和數(shù)學(xué)期望.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直三棱柱中, , , ,點, 分別是的中點.

(Ⅰ)求證: 平面;

(Ⅱ)若二面角的大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知面垂直于圓柱底面, 為底面直徑, 是底面圓周上異于的一點, .求證:

(1)平面平面

(2)求幾何體的最大體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間上的函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點為,過點的直線交拋物線位于第一象限)兩點.

(1)若直線的斜率為,過點分別作直線的垂線,垂足分別為,求四邊形的面積;

(2)若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處的切線與直線垂直,求函數(shù)的極值;

(2)設(shè)函數(shù).=時,若區(qū)間[1,e]上存在x0,使得,求實數(shù)的取值范圍.(為自然對數(shù)底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點.

(1)求橢圓的標準方程;

(2)過點的直線交橢圓于兩點,軸上的點,若是以為斜邊的等腰直角三角形, 求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案