18.設(shè)定義在R上的函數(shù)f(x)同時(shí)滿足以下三個(gè)條件:
①f(x)+f(-x)=0;
②f(x+2)=f(x);
③當(dāng)0<x<1時(shí),$f(x)=-\frac{x}{2}$,
則$f(\frac{3}{2})$=$\frac{1}{4}$.

分析 由①得f(x)為奇函數(shù),由②可得f(x)的周期為2,可得$f(\frac{3}{2})$=-f($\frac{1}{2}$),再由③計(jì)算即可得到所求值.

解答 解:由①可得f(-x)=-f(x),即f(x)為奇函數(shù);
由②可得f(x)為最小正周期是2的函數(shù),
則f($\frac{3}{2}$)=-f(-$\frac{3}{2}$)=-f(2-$\frac{3}{2}$)
=-f($\frac{1}{2}$),
由③可得,f($\frac{1}{2}$)=-$\frac{1}{4}$,
即有f($\frac{3}{2}$)=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點(diǎn)評 本題考查函數(shù)的奇偶性和周期性的判斷及應(yīng)用,考查賦值法數(shù)學(xué)的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知${∫}_{0}^{2}(m{e}^{mx}+sinx)dx={e}^{4}-cos2$,則${∫}_{-\frac{π}{m}}^{\frac{π}{m}}(cosx+\frac{3}{2-x})dx$=2+3ln$\frac{4+π}{4-π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.圓C1:x2+y2=a2與圓C2:(x-b)2+(y-c)2=a2相切,則$\frac{^{2}+{c}^{2}}{{a}^{2}}$等于( 。
A.1B.2C.4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,在空間直角坐標(biāo)系中有正三棱柱ABC-A1B1C1點(diǎn)是O、O1分別是棱AC、A1C1的中點(diǎn),且AA1=$\sqrt{2}$,AB1⊥BC1
(1)求正三棱柱ABC-A1B1C1的體積.
(2)若M為BC1的中點(diǎn),求異面直線AM與BO所成角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若冪函數(shù)y=xα的圖象過點(diǎn)$({\sqrt{2},4})$,則α=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在銳角△ABC中,AB=2,BC=3,△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,則AC的長為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.直線y=kx+1與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1相交,且過焦點(diǎn),則k=±$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知對數(shù)函數(shù)f(x)的圖象經(jīng)過點(diǎn)($\frac{1}{9}$,2),試求f(3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若α為第二象限角,則k•180°+α(k∈Z)的終邊所在的象限是( 。
A.第一象限B.第一、二象限C.第一、三象限D.第二、四象限

查看答案和解析>>

同步練習(xí)冊答案