已知函數(shù)y=f(x)與g(x)=log3x(x>0)是互為反函數(shù),則f(-2)=
 
考點:反函數(shù)
專題:計算題,函數(shù)的性質及應用
分析:由函數(shù)y=f(x)與g(x)=log3x(x>0)是互為反函數(shù),則求f(-2)可化為解方程log3x=-2,從而求得.
解答: 解:∵函數(shù)y=f(x)與g(x)=log3x(x>0)是互為反函數(shù),
∴求f(-2)即解方程log3x=-2,
故x=
1
9

故答案為:
1
9
點評:本題考查了反函數(shù)的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若存在不為零的常數(shù)T,使得函數(shù)y=f(x)對定義域內(nèi)的任意x均有f(x+T)=f(x),則稱函數(shù)y=f(x)為周期函數(shù),其中常數(shù)T就是函數(shù)的一個周期.
(1)證明:若存在不為零的常數(shù)a使得函數(shù)y=f(x)對定義域內(nèi)的任一x均有f(x+a)=-f(x),則此函數(shù)是周期函數(shù);
(2)若定義在R上的奇函數(shù)y=f(x)滿足f(x+1)=-f(x),試探究此函數(shù)在區(qū)間[-2008,2008]內(nèi)的零點的最少個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an},是一個公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16
(1)求數(shù)列{an}的通項公式
(2)記Sn為數(shù)列{an}的前n項和,是否存在正整數(shù)n,使得Sn>30n+400?若存在,求n的最小值;若不存在,說明理由.
(3)若數(shù)列{an}和數(shù)列{bn}滿足等式an=
b1
2
+
b2
22
+
b3
23
+…+
bn
2n
(n為正整數(shù)),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
1-2sin10°cos10°
cos350°-
1-cos2170°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2sinωx(ω>0)在區(qū)間[-
2
3
π,
2
3
π]上單調(diào)遞減,則ω的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2x+cos(x+
π
2
)-a,x∈[0,2π],a∈R.
(1)當f(x)=0有實數(shù)解時,求a的取值范圍;
(2)當x∈[0,2π]時,1≤f(x)≤5總成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:lg4+lg25-log28×log2
1
8
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

Rt△ABC中,AC=BC=
2
,CD⊥AB,沿CD將△ABC折成60°的二面角A-CD-B,則折疊后點A到平面BCD的距離是( 。
A、1
B、
1
2
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=-3sin(x-
π
3
)+2,x∈[0,π].
(1)求函數(shù)的值域以及取得最大值時x的值;
(2)求該函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習冊答案