【題目】已知集合A={ x|x },B={ x|x>4 },則有( 。
A.2∈A∩B
B.2∈A∪B
C.2A∩B
D.2A∪B

【答案】B
【解析】解答:由于A∩B=,A∪B={ x|xx>4},∴A不正確,
B正確,因為2< ,故有2∈A∪B
C不正確,不符合元素與集合關(guān)系的表述形式;
D不正確,元素與集合間關(guān)系表示格式不對.
故選B.
分析:由題設(shè)條件A={ x|x },B={ x|x>4 },及四個選項,知,本題研究元素與集合的關(guān)系,根據(jù)集合中元素的屬性判斷即可.
【考點精析】關(guān)于本題考查的集合的并集運算和集合的交集運算,需要了解并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立;交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】語文老師要從10篇課文中隨機抽3篇讓學(xué)生背誦,某學(xué)生只能背誦其中的6篇,求:
(1)抽到他能背誦的課文的數(shù)量的分布列;
(2)他能及格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.y= 與y=
B.y=lnex與y=elnx
C.y= 與y=x+3
D.y=x0與y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 的定義域為A,函數(shù)g(x)=lg(x﹣1),x∈[2,11]的值域為B,則A∩B為( 。
A.(﹣∞,1)
B.(﹣∞,1]
C.[0,1]
D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校要從參加數(shù)學(xué)競賽的1000名學(xué)生中,隨機抽取50名學(xué)生的成績進行分析,現(xiàn)將參加數(shù)學(xué)競賽的1000名學(xué)生編號如下000,001,002,…,999,如果在第一組隨機抽取的一個號碼為015,則抽取的第40個號碼為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求曲線在點處的切線方程;

(2)是自然對數(shù)的底數(shù))時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,已知點A的極坐標(biāo)為( , ),直線l的極坐標(biāo)方程為ρcos(θ﹣ )=a,且點A在直線l上.
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)若圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2(x2﹣ax+1+a)在區(qū)間(﹣∞,2)上為減函數(shù),則a的取值范圍為(
A.[4,+∞)
B.[4,5]
C.(4,5)
D.[4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖程序框圖,并根據(jù)該程序框圖回答以下問題:
(1)若輸入的x分別為2,4,求輸出y的值;
(2)說明該程序框圖的功能.

查看答案和解析>>

同步練習(xí)冊答案