【題目】(1)解不等式:

(2)有4名男生和3名女生

i)選出4人去參加座談會(huì),如果3人中必須既有男生又有女生,有多少種選法?

ii)7人排成一排,甲乙二人之間恰好有2個(gè)人,有多少種不同的排法?

【答案】(1) (2) i)30種,ii)960

【解析】

(1)根據(jù)排列數(shù)的公式,把不等式化為 ,求出解集即可.

(2)i)方法1:(間接法)在7人選3人的選法中,把只有男生和只有女生的情況排除掉,得到選法總數(shù);

方法2:(直接法)分別按含男1,2人分類,得到符合條件的選法總數(shù),

ii) 甲、乙先排好后,再從其余的5人中選出2人排在甲、乙之間,再根據(jù)分步計(jì)數(shù)原理,問題得以解決.

(1)原不等式即 ,

也就是,

化簡(jiǎn)得,

解得,又因?yàn)?/span>,且,

所以原不等式的解集為.

(2)i)方法1:(間接法)

在7人選3人的選法中,把只有男生和只有女生的情況排除掉,得到選法總數(shù)為:

(種);

方法2:(直接法)

分別按含男1,2人分類,得到符合條件的選法總數(shù)為:

(種).

ii) 甲、乙先排好后,再從其余的5人中選出2人排在甲、乙之間,把排好的5個(gè)元素與站好的2個(gè)元素全排列,分步有 =960種.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C的普通方程為在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為寫出圓C的參數(shù)方程和直線l的直角坐標(biāo)方程;設(shè)直線lx軸和y軸的交點(diǎn)分別為AB,P為圓C上的任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD= ,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中點(diǎn).

(1)求證:AE∥平面PBC;
(2)若直線AE與直線BC所成角等于 ,求二面角D﹣PB﹣A平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知函數(shù)),其中

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若函數(shù)僅在處有極值,求的取值范圍;

(3)若對(duì)于任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}與{bn}滿足:①a1=a<0,b1=b>0,②當(dāng)k≥2時(shí),若ak1+bk1≥0,則ak=ak1 , bk= ;若ak1+bk1<0,則ak= ,bk=bk1
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)設(shè)Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 對(duì)任意正整數(shù)k,當(dāng)2≤k≤n時(shí),恒有bk1>bk , 求n的最大值(用a,b表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2016年“猴”年的到來,某電視臺(tái)舉辦猜獎(jiǎng)活動(dòng),參與者需先后回答兩道選擇題,問題A有三個(gè)選項(xiàng),問題B有四個(gè)選項(xiàng),每題只有一個(gè)選項(xiàng)是正確的,正確回答問題A可獲獎(jiǎng)金1千元,正確回答問題B可獲獎(jiǎng)金2千元.活動(dòng)規(guī)定:參與者可任意選擇回答問題的順序,如果第一個(gè)問題回答正確,則繼續(xù)答題,否則該參與者猜獎(jiǎng)活動(dòng)終止.假設(shè)某參與者在回答問題前,選擇每道題的每個(gè)選項(xiàng)的機(jī)會(huì)是等可能的.
(Ⅰ)如果該參與者先回答問題A,求其恰好獲得獎(jiǎng)金1千元的概率;
(Ⅱ)試確定哪種回答問題的順序能使該參與者獲獎(jiǎng)金額的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}與{bn}滿足:①a1=a<0,b1=b>0,②當(dāng)k≥2時(shí),若ak1+bk1≥0,則ak=ak1 , bk= ;若ak1+bk1<0,則ak= ,bk=bk1
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)設(shè)Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 對(duì)任意正整數(shù)k,當(dāng)2≤k≤n時(shí),恒有bk1>bk , 求n的最大值(用a,b表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于莖葉圖的說法,結(jié)論錯(cuò)誤的一個(gè)是( )

A. 甲的極差是29 B. 甲的中位數(shù)是25

C. 乙的眾數(shù)是21 D. 甲的平均數(shù)比乙的大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有4個(gè)人去參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(Ⅱ)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案