【題目】下列判斷正確的是( )
A.“”是“”的充分不必要條件
B.函數(shù)的最小值為2
C.當(dāng)時,命題“若,則”為真命題
D.命題“,”的否定是“,”
【答案】C
【解析】
求解對數(shù)不等式之后即可考查選項A是否正確,利用換元法可確定選項B中函數(shù)的最小值,利用原命題與逆否命題的關(guān)系可判斷C選項是否正確,否定全稱命題即可確定選項D是否正確.
逐一考查所給命題的真假:
對于選項A:由可得,即,
故“”是“”的必要不充分條件,則題中的命題為假命題;
對于選項B:令,
由對勾函數(shù)的性質(zhì)可知函數(shù)單調(diào)遞增,其最小值為,則題中的命題為假命題;
對于選項C:考查其逆否命題:“若,則”,
很明顯該命題為真命題,則題中的命題為真命題;
對于選項D:命題“,”的否定是“,”,則題中的命題為假命題;
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交大設(shè)計學(xué)院植物園準(zhǔn)備用一塊邊長為4百米的等邊ΔABC田地(如圖)建立芳香植物生長區(qū)、植物精油提煉處與植物精油體驗點.田地內(nèi)擬建筆直小路MN、AP,其中M、N分別為AC、BC的中點,點P在CN上.規(guī)劃在小路MN和AP的交點O(O與M、N不重合)處設(shè)立植物精油體驗點,圖中陰影部分為植物精油提煉處,空白部分為芳香植物生長區(qū),A、N為出入口(小路寬度不計).為節(jié)約資金,小路MO段與OP段建便道,供芳香植物培育之用,費用忽略不計,為車輛安全出入,小路AO段的建造費用為每百米4萬元,小路ON段的建造費用為每百米3萬元.
(1)若擬建的小路AO段長為百米,求小路ON段的建造費用;
(2)設(shè)∠BAP=,求的值,使得小路AO段與ON段的建造總費用最小,并求岀最小建造總費用(精確到元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為D的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時滿足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n]時,f(x)的值域也是[m,n].則稱[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個“和諧區(qū)間”.
(2)求證:函數(shù)不存在“和諧區(qū)間”.
(3)已知:函數(shù)(a∈R,a≠0)有“和諧區(qū)間”[m,n],當(dāng)a變化時,求出n﹣m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(m,n為常數(shù)),在處的切線方程為.
(Ⅰ)求的解析式并寫出定義域;
(Ⅱ)若,使得對上恒有成立,求實數(shù)的取值范圍;
(Ⅲ)若有兩個不同的零點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l與兩直線y=1和x-y-7=0分別交于A,B兩點,若線段AB的中點為M(1,-1),則直線l的斜率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)若函數(shù)有兩個不同極值點,求實數(shù)的取值范圍;
(3)當(dāng)時,求證:對任意,恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于,兩點,過點作直線交橢圓于點,且,直線交軸于點.
(1)設(shè)橢圓的離心率為,當(dāng)點為橢圓的右頂點時,的坐標(biāo)為,求的值.
(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com