已知函數(shù)
,在(-∞,-1),(2,+∞)上單調(diào)遞增,在(-1,2)上單調(diào)遞減,當且僅當x>4時,
.
(Ⅰ)求函數(shù)
f(x)的解析式;
(Ⅱ)若函數(shù)
與函數(shù)
f(x)、g(x)的圖象共有3個交點,求
m的取值范圍.
(I)
f(x)=
x3-x2-6x-11
(II)
m的取值范圍是(-21,-
)∪(1,5)∪(5,+∞)
(I)
f(x)=3x2+2ax+b,由題意,-1,2是方程
f’(x)=0的兩根.
∴
4分
∴
f(x1)=x3-x2-6x+0令
h(x)=f(x)-g(x)= x3-x2-2x+c-5h’(x)=3x2-5x-2=(3x+1) (x-2)當x>4時,h’(x)>0,h(x)是增函數(shù),∴h(4)=11+c=0 ∴c=-11 7分
∴
f(x)=
x3-x2-6x-11 8分
(Ⅱ)
g(x)=(x-2)2+1 當
x=2時,
g(x)min=1
f(x)極大值=f(-1)=-
f(x)極小值=f(2)=-2l 11分
作出函數(shù)
f(x)、g(x)的草圖,由圖可得,當函數(shù)
y=m與函數(shù)
f(x)、g(x)的圖象共有3個交點,
m的取值范圍是(-21,-
)∪(1,5)∪(5,+∞) 15分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(1)若
有極值,求
b的取值范圍;
(2)若
在
處取得極值時,當
恒成立,求
c的取值范圍;
(3)若
在
處取得極值時,證明:對[-1,2]內(nèi)的任意兩個值
都有
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)函數(shù)
,其中
為常數(shù).
(1)當
時,判斷函數(shù)
在定義域上的單調(diào)性;
(2)若函數(shù)
的有極值點,求
的取值范圍及
的極值點;
(3)求證對任意不小于3的正整數(shù)
,不等式
都成立.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
的兩條切線
PM、
PN,切點分別為
M、
N.
(I)當
時,求函數(shù)
的單調(diào)遞增區(qū)間;
(II)設(shè)|
MN|=
,試求函數(shù)
的表達式;
(III)在(II)的條件下,若對任意的正整數(shù)
,在區(qū)間
內(nèi),總存在
m+1個數(shù)
使得不等式
成立,求
m的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)函數(shù)
(a>0)
(1)求函數(shù)
的單調(diào)區(qū)間,極大值,極小值
(2)若
時,恒有
>
,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分15分)已知
a∈R,函數(shù)
f (
x) =
x3 +
ax2 + 2
ax (
x∈R). (Ⅰ)當
a = 1時,求函數(shù)
f (
x)的單調(diào)遞增區(qū)間; (Ⅱ)函數(shù)
f (
x) 能否在R上單調(diào)遞減,若是,求出
a的取值范圍;若不能,請說明理由; (Ⅲ)若函數(shù)
f (
x)在[-1,1]上單調(diào)遞增,求
a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(I)已知函數(shù)
在
上是增函數(shù),求
得取值范圍;
(II)在(I)的結(jié)論下,設(shè)
,
,求函數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)
是二次函數(shù),方程
有兩個相等實根,且
,求
的表達式.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)
的導函數(shù)
,且
的值為整數(shù),當
時,
所有可能取的整數(shù)值有且只有1個,則
。
查看答案和解析>>