【題目】已知函數(shù) ,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn) ,向量 =(0,1),θn是向量 與 的夾角,則使得 恒成立的實(shí) 數(shù)t的取值范圍為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的最小正周期為 ,且當(dāng) 時(shí), 取得最大值 .
(1)求 的解析式及單調(diào)增區(qū)間;
(2)若 ,且 ,求 ;
(3)將函數(shù) 的圖象向右平移 ( )個(gè)單位長度后得到函數(shù) 是偶函數(shù),求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和為,并且滿足,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,數(shù)列的前n項(xiàng)和為,求;
(3)在(2)的條件下,是否存在常數(shù),使得數(shù)列為等比數(shù)列?若存在,試求出;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 為參數(shù))經(jīng)過橢圓 為參數(shù))的左焦點(diǎn) .
(1)求 的值;
(2)設(shè)直線 與橢圓 交于 兩點(diǎn),求 的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為圓心的圓與軸交于與軸交與,其中為原點(diǎn).
(1)求證:的面積為定值;
(2)設(shè)直線與圓交于點(diǎn),若,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系上一動(dòng)點(diǎn)到點(diǎn)的距離是點(diǎn)到點(diǎn)的距離的2倍。
(1)求點(diǎn)的軌跡方程;
(2)若點(diǎn)與點(diǎn)關(guān)于點(diǎn)對稱,求,兩點(diǎn)間距離的最大值。
(3)若過點(diǎn)的直線與點(diǎn)的軌跡相交于、兩點(diǎn),,則是否存在直線,使 取得最大值,若存在,求出此時(shí)的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某飛機(jī)失聯(lián),經(jīng)衛(wèi)星偵查,其最后出現(xiàn)在小島附近,現(xiàn)派出四艘搜救船,為方便聯(lián)絡(luò),船始終在以小島為圓心,100海里為半徑的圓上,船構(gòu)成正方形編隊(duì)展開搜索,小島在正方形編隊(duì)外(如圖).設(shè)小島到的距離為,,船到小島的距離為.
(1)請分別求關(guān)于的函數(shù)關(guān)系式,并分別寫出定義域;
(2)當(dāng)兩艘船之間的距離是多少時(shí)搜救范圍最大(即最大)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的莖葉圖記錄了甲、乙兩組各5名同學(xué)的投籃命中次數(shù),乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中用 表示.
(1)若乙組同學(xué)投籃命中次數(shù)的平均數(shù)比甲組同學(xué)的平均數(shù)少1,求 及乙組同學(xué)投籃命中次數(shù)的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名,求這兩名同學(xué)的投籃命中次數(shù)之和為16的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的個(gè)數(shù)為( )
①“x∈R都有x2≥0”的否定是“x0∈R使得x02≤0”;
②“x≠3”是“|x|≠3”成立的充分條件;
③命題“若m≤ ,則方程mx2+2x+2=0有實(shí)數(shù)根”的否命題為真命題.
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com