如圖,E,F(xiàn)分別為正方形ABCD的邊BC,CD的中點,沿圖中虛線將邊長為2的正方形折起來,圍成一個三棱錐,則此三棱錐的體積是
 
考點:棱柱、棱錐、棱臺的體積
專題:計算題,空間位置關(guān)系與距離
分析:由題意圖形折疊為三棱錐,直接求出三棱柱的體積即可.
解答: 解:由題意圖形折疊為三棱錐,底面為△EFC,高為AC,
所以三棱柱的體積:
1
3
×
1
2
×1×1×2=
1
3

故答案為:
1
3
點評:本題是基礎(chǔ)題,考查幾何體的體積的求法,注意折疊問題的處理方法,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為a的正方體ABCD-A1B1C1D1中,點E是棱D1D的中點,點F在棱B1B上,且滿足B1F=2BF.
(1)求證:EF⊥A1C1;    
(2)求幾何體ABFED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-3≤x≤2},B={x|k+1<x<2k-1},且A?B,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

任給實數(shù)a,b定義a⊕b=
a×b,a×b≥0
a
b
,a×b<0
  設(shè)函數(shù)f(x)=lnx⊕x,若{an}是公比大于0的等比數(shù)列,且a5=1,f(a1)+f(a2)+f(a3)+…+f(a7)+f(a8)=a1,則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(x1,x12),B(x2,x22)是函數(shù)y=x2圖象上的任意不同兩點,由圖象可知,線段AB總是位于A,B兩點之間函數(shù)圖象的上方,因此結(jié)論
x12+x22
2
>(
x1+x2
2
2成立,運(yùn)用類比推理的思想,若點A(x1,log2x1),B(x2,log2x2)是函數(shù)y=log2x圖象上的任意不同兩點,則類似的有結(jié)論
 
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,已知底面ABCD是矩形,AB=2,AD=a,PD⊥平面ABCD,若邊AB上存在點M,使得PM⊥CM,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓臺兩底面半徑分別是2和5,母線長是3
10
,則它的軸截面的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,a≠1,函數(shù)f(x)=a lg(x2-2x+3)有最大值,則不等式loga(x2-4x-4)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線9y2-16x2=144的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案