給出如下四個(gè)命題:
①對(duì)于任意一條直線a,平面α內(nèi)必有無數(shù)條直線與a垂直;
②若α、β是兩個(gè)不重合的平面,l、m是兩條不重合的直線,則α∥β的一個(gè)充分而不必要條件是l⊥α,m⊥β,且l∥m;
③已知a、b、c、d是四條不重合的直線,如果a⊥c,a⊥d,b⊥c,b⊥d,則“a∥b”與“c∥d”不可能都不成立;
④已知命題P:若四點(diǎn)不共面,那么這四點(diǎn)中任何三點(diǎn)都不共線.
則命題P的逆否命題是假命題上命題中,正確命題的個(gè)數(shù)是


  1. A.
    3
  2. B.
    2
  3. C.
    1
  4. D.
    4
D
分析:用線面位置關(guān)系的定義判斷,結(jié)合線面垂直的定義和線線的位置關(guān)系判斷,用反證法判斷④推出矛盾.
解答:①對(duì),當(dāng)a?α或a∥α?xí)r,α內(nèi)必有無數(shù)條直線與a垂直;
當(dāng)a∩α=A時(shí),若a⊥α?xí)r滿足題意;
當(dāng)a與α斜交時(shí),a在α內(nèi)的射影與α內(nèi)的直線垂直,則a與該直線垂直,
α內(nèi)必有無數(shù)條直線與a垂直;
②對(duì),充分性成立,∵l⊥α,l∥m,∴m⊥α,又∵m⊥β,∴α∥β,
必要性不成立,α∥β,推不出l和m關(guān)系;
③對(duì),c∥d時(shí),滿足條件;c與d相交時(shí)確定一個(gè)平面α,則a⊥α,b⊥α,故有a∥b;
當(dāng)c與d異面時(shí),可c過上一點(diǎn)作出e與d平行,則c、e確定平面β,a⊥β,b⊥β,有a∥b;
④對(duì),用反證法證明,得出與條件矛盾;
故選D.
點(diǎn)評(píng):本題考查了線面位置關(guān)系的定義,用反證法證明推出矛盾,考查了推理論證能力、空間想象能力和邏輯思維能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出如下四個(gè)命題
①對(duì)于任意的實(shí)數(shù)α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;
②存在實(shí)數(shù)α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;
③公式tan(α+β)=
tanα+tanβ
1-tanα•tanβ
成立的條件是α≠kπ+
π
2
(k∈Z)且β≠kπ+
π
2
(k∈Z);
④不存在無窮多個(gè)α和β,使sin(α-β)=sinαcosβ-cosαsinβ;
其中假命題是( 。
A、①②B、②③C、③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x|x|+bx+c(b,c∈R),給出如下四個(gè)命題:①若c=0,則f(x)為奇函數(shù);②若b=0,則函數(shù)f(x)在R上是增函數(shù);③函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,c)成中心對(duì)稱圖形;④關(guān)于x的方程f(x)=0最多有兩個(gè)實(shí)根.其中正確的命題
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)給出如下四個(gè)命題:
①過點(diǎn)A(4,1)且在兩坐標(biāo)軸上的截距相等的直線共有兩條;
②若平面α內(nèi)的兩條直線都與平面β平行,則α∥β;
③已知α∩β=l,若α內(nèi)的直線m垂直于l,則α⊥β;
④已知α⊥β,α∩β=l,若α內(nèi)的直線m與l不垂直,則m與β也不垂直.
請(qǐng)你寫出其中所有真命題的序號(hào):
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閘北區(qū)一模)在實(shí)數(shù)集R中,我們定義的大小關(guān)系“>”為全體實(shí)數(shù)排了一個(gè)“序”.類似的,我們?cè)趶?fù)數(shù)集C上也可以定義一個(gè)稱為“序”的關(guān)系,記為“>”.定義如下:對(duì)于任意兩個(gè)復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”.
按上述定義的關(guān)系“>”,給出如下四個(gè)命題:
①1>i>0; 
②若z1>z2,z2>z3,則z1>z3
③若z1>z2,則,對(duì)于任意z∈C,z1+z>z2+z;
④對(duì)于復(fù)數(shù)z>0,若z1>z2,則zz1>zz2
其中真命題的序號(hào)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下四個(gè)命題:
①若a≥0,b≥0,則
2(a2+b2)
≥a+b
;
②若ab>0,則|a+b|<|a|+|b|;
③若a>0,b>0,a+b>4,ab>4,則a>2,b>2;
④若a,b,c,∈R,且ab+bc+ca=1,則(a+b+c)2≥3;
其中正確的命題是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案