a
=(m+1)
i
-3
j
,
b
=
i
+(m-1)
j
,其中
i
,
j
為互相垂直的單位向量,又(
a
+
b
)⊥(
a
-
b
),則實數(shù)m=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:由(
a
+
b
)⊥(
a
-
b
),可得(
a
+
b
)•(
a
-
b
)=
a
2
-
b
2
=0,即可得出.
解答: 解:∵
a
=(m+1)
i
-3
j
b
=
i
+(m-1)
j
,其中
i
,
j
為互相垂直的單位向量,
a
=(m+1,-3)
,
b
=(1,m-1).
又(
a
+
b
)⊥(
a
-
b
),
∴(
a
+
b
)•(
a
-
b
)=
a
2
-
b
2
=0,
∴(m+1)2+9-[1+(m-1)2]=0,
化為m=-2.
故答案為:-2.
點評:本題考查了向量數(shù)量積運算性質、向量垂直與數(shù)量積的關系,考查了推理能力與計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,PA=PD=AD
=2,點M在線段PC上,且
PM
MC
(0≤λ≤1),N為AD的中點
(1)求證:BC⊥平面PNB
(2)若平面PAD⊥平面ABCD,且二面角M-BN-D為60°,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-2
-b2+4b-3
•x,g(x)=x2(2a2-x2)(a∈N+,b∈Z),若存在x0,使f(x0)為f(x)的最小值,使g(x0)為g(x)的最大值,則此時數(shù)對(a,b)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一個容器為0.3L的水壺里灌滿一壺水,水的溫度為t1=3℃,由于散熱壺內溫度每min下降t=0.2℃,為了保持壺內溫度不變,可從水龍頭給它連續(xù)不斷地滴入溫度為t2=45℃的熱水,假設每滴熱水的質量m=0.2g.問:每min應滴入多少滴熱水才能維持壺內水溫不變.(假設壺內熱傳遞極快,熱水滴入后水溫很快達到一致,多余的水從壺嘴溢出,不計水壺的吸熱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
=(1,2),
b
=(3,1),且
a
a
b
垂直,則λ的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(
x2
3
,x),
b
=(x,x-3),x≥-4,若
a
b
取最小值時,<
a
,
b
>的值是(  )
A、
π
4
B、
π
6
C、
4
D、
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項之和為Sn,求通項公式:
(1)Sn=3n2-2n
(2)Sn=2n+3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
,
b
,
c
均為非零向量,則下面結論:
a
=
b
a
c
=
b
c
;       
a
c
=
b
c
a
=
b
;
a
•(
b
+
c
)=
a
b
+
a
c
;     
a
b
c
)=(
a
b
)•
c

正確的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于c>0,當非零實數(shù)a、b滿足a2-2ab+2b2=c且使|a+b|最大時,
3
a
-
4
b
+
5
c
的最小值為
 

查看答案和解析>>

同步練習冊答案