【題目】2019年上半年我國多個(gè)省市暴發(fā)了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時(shí)間豬肉價(jià)格暴漲,其他肉類價(jià)格也跟著大幅上揚(yáng),嚴(yán)重影響了居民的生活.為了解決這個(gè)問題,我國政府一方面鼓勵(lì)有條件的企業(yè)和散戶防控疫情,擴(kuò)大生產(chǎn);另一方面積極向多個(gè)國家開放豬肉進(jìn)口,擴(kuò)大肉源,確保市場供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場形勢,決定響應(yīng)政府號召,擴(kuò)大生產(chǎn)決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就“一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系”進(jìn)行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表:
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究員甲根據(jù)以上數(shù)據(jù)認(rèn)為與具有線性回歸關(guān)系,請幫他求出關(guān)于的線.性回歸方程(保留小數(shù)點(diǎn)后兩位有效數(shù)字)
(2)研究員乙根據(jù)以上數(shù)據(jù)得出與的回歸模型:.為了評價(jià)兩種模型的擬合效果,請完成以下任務(wù):
①完成下表(計(jì)算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點(diǎn)的殘差);
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計(jì)值 | |||||
殘差 | ||||||
模型乙 | 估計(jì)值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 |
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過比較的大小,判斷哪個(gè)模型擬合效果更好.
(3)根據(jù)市場調(diào)查,生豬存欄數(shù)量達(dá)到1萬頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達(dá)到1.2萬頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計(jì)算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)
參考公式:.
參考數(shù)據(jù):.
【答案】(1); (2)模型的擬合效果更好; (3)選擇生豬存欄數(shù)量1.2萬頭能獲得更多利潤.
【解析】
(1)利用公式直接計(jì)算得到答案.
(2)計(jì)算得到,得到答案.
(3)根據(jù)模型分別計(jì)算利潤,比較大小得到答案.
(1)由題知:,,
,故.
(2)①經(jīng)計(jì)算,可得下表:
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計(jì)值 | 2.80 | 2.55 | 2.30 | 2.05 | 1.30 |
殘差 | 0.40 | 0.20 | ||||
模型乙 | 估計(jì)值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 |
,
因?yàn)?/span>,故模型的擬合效果更好.
(3)若生豬存欄數(shù)量達(dá)到1萬頭,由(2)模型乙可知,每頭豬的成本為元,
這樣一天獲得的總利潤為(元);
若生豬存欄數(shù)量達(dá)到1.2萬頭,由(2)模型乙可知,每頭豬的成本為元,
這樣一天獲得的總利潤為(元),
因?yàn)?/span>,所以選擇生豬存欄數(shù)量1.2萬頭能獲得更多利潤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國大學(xué)先修課程,是在高中開設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來的職業(yè)生涯做好準(zhǔn)備.某高中開設(shè)大學(xué)先修課程已有兩年,兩年共招收學(xué)生2000人,其中有300人參與學(xué)習(xí)先修課程,兩年全校共有優(yōu)等生200人,學(xué)習(xí)先修課程的優(yōu)等生有60人.這兩年學(xué)習(xí)先修課程的學(xué)生都參加了考試,并且都參加了某高校的自主招生考試(滿分100分),結(jié)果如下表所示:
分?jǐn)?shù) | |||||
人數(shù) | 20 | 55 | 105 | 70 | 50 |
參加自主招生獲得通過的概率 | 0.9 | 0.8 | 0.6 | 0.5 | 0.4 |
(1)填寫列聯(lián)表,并畫出列聯(lián)表的等高條形圖,并通過圖形判斷學(xué)習(xí)先修課程與優(yōu)等生是否有關(guān)系,根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?
優(yōu)等生 | 非優(yōu)等生 | 總計(jì) | |
學(xué)習(xí)大學(xué)先修課程 | |||
沒有學(xué)習(xí)大學(xué)先修課程 | |||
總計(jì) |
(2)已知今年有150名學(xué)生報(bào)名學(xué)習(xí)大學(xué)先修課程,以前兩年參加大學(xué)先修課程學(xué)習(xí)成績的頻率作為今年參加大學(xué)先修課程學(xué)習(xí)成績的概率.
①在今年參與大學(xué)先修課程的學(xué)生中任取一人,求他獲得某高校自主招生通過的概率;
②設(shè)今年全校參加大學(xué)先修課程的學(xué)生獲得某高校自主招生通過的人數(shù)為,求.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列中,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求證: ;
(3)是否存在正整數(shù),使得對任意正整數(shù)均成立?若存在,求出的最大值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面上到兩個(gè)定點(diǎn)的距離的積為定值的動(dòng)點(diǎn)軌跡一般稱為卡西尼(cassin)卵形線,已知曲線為到定點(diǎn)的距離之積為常數(shù)4的點(diǎn)的軌跡,關(guān)于曲線的幾何性質(zhì)有下四個(gè)結(jié)論,其中錯(cuò)誤的是( )
A.曲線關(guān)于原點(diǎn)對稱B.的面積的最大值為2
C.其中的取值范圍為D.其中的取值范圍為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線上,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若對任意的,都有恒成立,求的最小值;
(2)設(shè),若為曲線上的兩個(gè)不同的點(diǎn),滿足,且,使得曲線在點(diǎn)處的切線與直線平行,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知曲線的參數(shù)方程為(為參數(shù),),曲線的極坐標(biāo)方程為:.且兩曲線與交于兩點(diǎn).
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè),若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在橢圓上任取一點(diǎn)(不為長軸端點(diǎn)),連結(jié)、,并延長與橢圓分別交于點(diǎn)、兩點(diǎn),已知的周長為8,面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)坐標(biāo)原點(diǎn)為,當(dāng)不是橢圓的頂點(diǎn)時(shí),直線和直線的斜率之積是否為定值?若是定值,請求出這個(gè)定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是2015年至2019年國內(nèi)游客人次y(單位:億)的散點(diǎn)圖.
為了預(yù)測2025年國內(nèi)游客人次,根據(jù)2015年至2019年的數(shù)據(jù)建立了與時(shí)間變量(時(shí)間變量的值依次為1,2,..,5)的3個(gè)回歸模型:①;②;③.其中相關(guān)指數(shù).
(1)你認(rèn)為用哪個(gè)模型得到的預(yù)測值更可靠?并說明理由.
(2)根據(jù)(1)中你選擇的模型預(yù)測2025年國內(nèi)游客人次,結(jié)合已有數(shù)據(jù)說明數(shù)據(jù)反映出的社會(huì)現(xiàn)象并給國家相關(guān)部門提出應(yīng)對此社會(huì)現(xiàn)象的合理化建議.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com