【題目】已知O為△ABC內(nèi)一點(diǎn),且 , ,若B,O,D三點(diǎn)共線,則t的值為( )
A.
B.
C.
D.
【答案】B
【解析】解:以O(shè)B,OC為鄰邊作平行四邊形OBFC,連接OF與 BC相交于點(diǎn)E,E為BC的中點(diǎn). ∵ ,∴ =2 =2 ,
∴點(diǎn)O是直線AE的中點(diǎn).
∵ ,B,O,D三點(diǎn)共線,
∴點(diǎn)D是BO與AC的交點(diǎn).
過(guò)點(diǎn)O作OM∥BC交AC于點(diǎn)M,則點(diǎn)M為AC的中點(diǎn).
則OM= EC= BC, = ,
∴DM= MC,
∴AD= AM= AC,
∴t= .
故選:B.
以O(shè)B,OC為鄰邊作平行四邊形OBFC,連接OF與 BC相交于點(diǎn)E,E為BC的中點(diǎn).由 ,可得 =2 =2 ,點(diǎn)O是直線AE的中點(diǎn).根據(jù) ,B,O,D三點(diǎn)共線,可得點(diǎn)D是BO與AC的交點(diǎn).過(guò)點(diǎn)O作OM∥BC交AC于點(diǎn)M,則點(diǎn)M為AC的中點(diǎn).即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=(x2﹣3)ex , 當(dāng)m在R上變化時(shí),設(shè)關(guān)于x的方程f2(x)﹣mf(x)﹣ =0的不同實(shí)數(shù)解的個(gè)數(shù)為n,則n的所有可能的值為( )
A.3
B.1或3
C.3或5
D.1或3或5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 和點(diǎn)P(4,2),直線l經(jīng)過(guò)點(diǎn)P且與橢圓交于A,B兩點(diǎn).
(1)當(dāng)直線l的斜率為 時(shí),求線段AB的長(zhǎng)度;
(2)當(dāng)P點(diǎn)恰好為線段AB的中點(diǎn)時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) = , =(4sinx,cosx﹣sinx),f(x)= .
(1)求函數(shù)f(x)的解析式;
(2)已知常數(shù)ω>0,若y=f(ωx)在區(qū)間 是增函數(shù),求ω的取值范圍;
(3)設(shè)集合A= ,B={x||f(x)﹣m|<2},若AB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中, 是的中點(diǎn), ,其周長(zhǎng)為,若點(diǎn)在線段上,且.
(1)建立合適的平面直角坐標(biāo)系,求點(diǎn)的軌跡的方程;
(2)若是射線上不同兩點(diǎn), ,過(guò)點(diǎn)的直線與交于,直線與交于另一點(diǎn).證明: 是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大學(xué)生趙敏利用寒假參加社會(huì)實(shí)踐,對(duì)機(jī)械銷(xiāo)售公司7月份至11月份銷(xiāo)售某種機(jī)械配件的銷(xiāo)售量及銷(xiāo)售單價(jià)進(jìn)行了調(diào)查,銷(xiāo)售單價(jià)x元和銷(xiāo)售量y件之間的一組數(shù)據(jù)如表所示:
月份 | 7 | 8 | 9 | 10 | 11 |
銷(xiāo)售單價(jià)x元 | 9 | 9.5 | 10 | 10.5 | 11 |
銷(xiāo)售量y件 | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)7至11月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)售量與銷(xiāo)售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷(xiāo)售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)? 參考公式:回歸直線方程 =b +a,其中b= .
參考數(shù)據(jù): =392, =502.5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是矩形, 平面, 是的中點(diǎn).
(1)求證: 平面;
(2)若, ,求證平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一(1)班全體男生的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如圖甲所示,據(jù)此解答如下問(wèn)題:
(1)求該班全體男生的人數(shù);
(2)求分?jǐn)?shù)在[80,90)之間的男生人數(shù),并計(jì)算頻率公布直方圖如圖乙中[80,90)之間的矩形的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣ax,e為自然對(duì)數(shù)的底數(shù) (Ⅰ)若函數(shù)f(x)的圖象在點(diǎn)(e2 , f(e2))處的切線方程為 3x+4y﹣e2=0,求實(shí)數(shù)a,b的值;
(Ⅱ)當(dāng)b=1時(shí),若存在 x1 , x2∈[e,e2],使 f(x1)≤f′(x2)+a成立,求實(shí)數(shù)a的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com