已知x,y滿足不等式組,則的最大值為   
【答案】分析:作出滿足約束條件的可行域,分析的幾何意義,借助圖形分析后,利用角點法,即可得到答案.
解答:解:作出不等式組的平面區(qū)域
,而表示可行域中的點與(-2,0)連線的斜率,據圖象知,
當(-2,0)與A的連線斜率最大,與B的連線斜率取最小值-
所以的最大值為
故答案為:
點評:本題考查的知識點是簡單線性規(guī)劃,其中根據已知中的約束條件,畫出滿足條件的可行域,借助圖形來分析問題是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x,y滿足不等式組
x-y-1≥0
x+y-1≤0
x+2y+1≥0
則z=20-2y+x的最大值是( 。
A、21B、23C、25D、27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足不等式組
x+y≤4
ax+by-2a≤0
,且目標函數(shù)z=2x+y的最大值為7,則a+b=
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x、y滿足不等式
2x+y≤6
x+y≤5
x≥0,y≥0
,在這些點中,使目標函數(shù)z=6x+8y取得最大值的點的坐標是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知x,y滿足不等式組
x+y≤4
ax+by-2a≤0
,且目標函數(shù)z=2x+y的最大值為7,則a+b=
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•南匯區(qū)二模)(文)已知x,y滿足不等式組
x-y-1≥0
x+y-1≤0
x+2y+1≥0
則z=20-2y+x的最大值=
27
27

查看答案和解析>>

同步練習冊答案