4.三角形ABC中,A、B、C所對(duì)的邊分別為a,b,c;若A=$\frac{π}{3}$,則$a(cosC+\sqrt{3}sinC)$=(  )
A.a+bB.a+cC.b+cD.a+b+c

分析 由正弦定理可得:a=2RsinA代入已知式子,由三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)即可得解.

解答 解:∵由正弦定理可得:a=2RsinA,
∴a(cosC+$\sqrt{3}$sinC)
=2RsinAcosC+2$\sqrt{3}$RsinAsinC
=2RsinAcosC+3RsinC
=2R(sinAcosC+$\frac{1}{2}$sinC+sinC)
=2R(sinAcosC+cosAsinC+sinC)
=2R[sin(A+C)+sinC]
=2R(sinB+sinC)
=b+c.
故選:C.

點(diǎn)評(píng) 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,三角形內(nèi)角和定理的應(yīng)用,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)ω為正實(shí)數(shù),若存在a,b(π≤a<b≤2π),使得sinωa+sinωb=2,則ω的取值范圍($\frac{1}{4}$,$\frac{1}{2}$)∪($\frac{5}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)$f(x)=x({m+\frac{1}{{{e^x}-1}}})$為偶函數(shù),則m的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3+a6=12,S4=8,則a9的值是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的是(  )
A.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件
D.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)f(x)=cosx-sinx,把f(x)的圖象按向量$\overrightarrow{a}$=(m,0)(m>0)平移后,圖象恰好為函數(shù)y=-f′(x)的圖象,則m的值可以為( 。
A.$\frac{π}{4}$B.$\frac{3}{4}$πC.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若復(fù)數(shù)z=(1-i)(m+2i)(i為虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖是一個(gè)算法的偽代碼,運(yùn)行后輸出的n值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若集合A={x|x=in,n∈N+}(i是虛數(shù)單位),B={1,-1},則A∩B等于( 。
A.{-1}B.{1}C.D.{1,-1}

查看答案和解析>>

同步練習(xí)冊(cè)答案