【題目】設f(x)是定義在R上的可導函數(shù),且滿足f′(x)>f(x),對任意的正數(shù)a,下面不等式恒成立的是(
A.f(a)<eaf(0)
B.f(a)>eaf(0)
C.
D.

【答案】B
【解析】解:∵f(x)是定義在R上的可導函數(shù),

∴可以令f(x)= ,

∴f′(x)= = ,

∵f′(x)>f(x),ex>0,

∴f′(x)>0,

∴f(x)為增函數(shù),

∵正數(shù)a>0,

∴f(a)>f(0),

=f(0),

∴f(a)>eaf(0),

故選B.

【考點精析】本題主要考查了基本求導法則和利用導數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點,需要掌握若兩個函數(shù)可導,則它們和、差、積、商必可導;若兩個函數(shù)均不可導,則它們的和、差、積、商不一定不可導;一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設命題p:f(x)= 在區(qū)間(1,+∞)上是減函數(shù);命題q:2x﹣1+2m>0對任意x∈R恒成立.若(¬p)∧q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,甲船以每小時30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里.當甲船航行20分鐘到達A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里,問乙船每小時航行多少海里?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對兩個變量y和x進行回歸分析,得到一組樣本數(shù)據(jù):(x1 , y1),(x2 , y2),…,(xn , yn),則下列說法中不正確的是(
A.由樣本數(shù)據(jù)得到的回歸方程 = x+ 必過樣本中心(
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好
D.兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近于1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知冪函數(shù)滿足

1)求函數(shù)的解析式;

2)若函數(shù),是否存在實數(shù)使得的最小值為0?若存在,求出的值;若不存在,說明理由;

3)若函數(shù),是否存在實數(shù),使函數(shù)上的值域為?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立坐標系.已知曲線C:ρsin2θ=2acosθ(a>0),過點P(﹣2,﹣4)的直線l的參數(shù)方程為 (t為參數(shù)),直線l與曲線C分別交于M、N兩點.
(1)寫出曲線C和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】通過市場調(diào)查,得到某種產(chǎn)品的資金投入x(單位:萬元)與獲得的利潤y(單位:萬元)的數(shù)據(jù),如表所示:

資金投入x

2

3

4

5

6

利潤y

2

3

5

6

9

(1)畫出數(shù)據(jù)對應的散點圖;

(2)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程x+;

(3)現(xiàn)投入資金10萬元,求獲得利潤的估計值為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:已知函數(shù)上的最小值為,若恒成立,則稱函數(shù)上具有性質(zhì).

)判斷函數(shù)上是否具有性質(zhì)?說明理由.

)若上具有性質(zhì),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某市準備在道路的一側(cè)修建一條運動比賽道,賽道的前一部分為曲線段,該曲線段是函數(shù)時的圖象,且圖象的最高點為.賽道的中間部分為長千米的直線跑道,且.賽道的后一部分是以為圓心的一段圓弧.

(1)的值和的大;

(2)若要在圓弧賽道所對應的扇形區(qū)域內(nèi)建一個“矩形草坪”,矩形的一邊在道路上,一個頂點在半徑上,另外一個頂點在圓弧上,且,求當“矩形草坪”的面積取最大值時的值.

查看答案和解析>>

同步練習冊答案