【答案】
分析:(1)由題意,利用導(dǎo)函數(shù)的幾何含義及切點(diǎn)的實(shí)質(zhì)建立a,b的方程,然后求解即可;
(2)由題意,對于定義域內(nèi)任意自變量都使得|f(x
1)-f(x
2)|≤c,可以轉(zhuǎn)化為求函數(shù)在定義域下的最值即可得解;
(3)由題意,若過點(diǎn)M(2,m)(m≠2)可作曲線y=f(x)的三條切線,等價(jià)與函數(shù)在切點(diǎn)處導(dǎo)函數(shù)值等于切線的斜率這一方程有3解.
解答:解:(1)f'(x)=3ax
2+2bx-3.(2分)
根據(jù)題意,得
即
解得
所以f(x)=x
3-3x.
(2)令f'(x)=0,即3x
2-3=0.得x=±1.
當(dāng)x∈(-∞,-1)時(shí),f
′(x)>0,函數(shù)f(x)在此區(qū)間單調(diào)遞增;
當(dāng)x∈(-1,1)時(shí),f
′(x)<0,函數(shù)f(x)在此區(qū)間單調(diào)遞減
因?yàn)閒(-1)=2,f(1)=-2,
所以當(dāng)x∈[-2,2]時(shí),f(x)
max=2,f(x)
min=-2.
則對于區(qū)間[-2,2]上任意兩個(gè)自變量的值x
1,x
2,都有|f(x
1)-f(x
2)|≤|f(x)
max-f(x)
min|=4,所以c≥4.
所以c的最小值為4.
(3)因?yàn)辄c(diǎn)M(2,m)(m≠2)不在曲線y=f(x)上,所以可設(shè)切點(diǎn)為(x
,y
).
則y
=x
3-3x
.
因?yàn)閒'(x
)=3x
2-3,所以切線的斜率為3x
2-3.
則3x
2-3=
,
即2x
3-6x
2+6+m=0.
因?yàn)檫^點(diǎn)M(2,m)(m≠2)可作曲線y=f(x)的三條切線,
所以方程2x
3-6x
2+6+m=0有三個(gè)不同的實(shí)數(shù)解.
所以函數(shù)g(x)=2x
3-6x
2+6+m有三個(gè)不同的零點(diǎn).
則g'(x)=6x
2-12x.令g'(x)=0,則x=0或x=2.
當(dāng)x∈(-∞,0)時(shí),g
′(x)>0,函數(shù)g(x)在此區(qū)間單調(diào)遞增;當(dāng)x∈(0,2)時(shí),g
′(x)<0,函數(shù)g(x)在此區(qū)間單調(diào)遞減;
所以,函數(shù)g(x)在x=0處取極大值,在x=2處取極小值,有方程與函數(shù)的關(guān)系知要滿足題意必須滿足:
,即
,解得-6<m<2.
點(diǎn)評:(1)此題重點(diǎn)考查了導(dǎo)數(shù)的幾何含義及函數(shù)切點(diǎn)的定義,還考查了數(shù)學(xué)中重要的方程的思想;
(2)此題重點(diǎn)考查了數(shù)學(xué)中等價(jià)轉(zhuǎn)化的思想把題意最總轉(zhuǎn)化為求函數(shù)在定義域下的最值;
(3)此題重點(diǎn)考查了數(shù)學(xué)中導(dǎo)數(shù)的幾何含義,還考查了函數(shù)解的個(gè)數(shù)與相應(yīng)方程的解的個(gè)數(shù)的關(guān)系.