【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.

【答案】(1);(2)

【解析】

分析:(I)由題意結(jié)合幾何關(guān)系可求得.則橢圓的方程為.

(II)設(shè)點(diǎn)P的坐標(biāo)為,點(diǎn)M的坐標(biāo)為 ,由題意可得.

易知直線的方程為,由方程組可得.由方程組可得.結(jié)合,可得,或.經(jīng)檢驗(yàn)的值為.

詳解:(I)設(shè)橢圓的焦距為2c,由已知得,又由可得,從而

所以,橢圓的方程為

(II)設(shè)點(diǎn)P的坐標(biāo)為,點(diǎn)M的坐標(biāo)為,由題意,,

點(diǎn)的坐標(biāo)為的面積是面積的2倍,可得

從而,

易知直線的方程為,由方程組消去y,可得.由方程組消去,可得.由可得,兩邊平方整理得,解得

當(dāng)時(shí),,不合題意,舍去;當(dāng)時(shí),,,符合題意

所以,的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知函數(shù)f(x)=ax2bxc(a>0,bR,cR).

(1)若函數(shù)f(x)的最小值是f(-1)=0,且c=1, F(x)=F(2)+F(-2)的值;

(2)a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) fx)=x22ax+2,x[0,3]

1a1 時(shí),求 fx)的值域;

2)求 fx)的最小值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=2cos(2x+)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)y=fx)的圖象.

(1)求fx)的單調(diào)遞增區(qū)間;

(2)求fx)在[0,]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知yf(x)是定義在R上的偶函數(shù),當(dāng)x0時(shí),f(x)=.

(1)求當(dāng)x<0時(shí),f(x)的解析式;

(2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角的對(duì)邊分別為,已知

(1)求;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為 ,在同一平面直角坐標(biāo)系中,將曲線C上的點(diǎn)按坐標(biāo)變換 得到曲線C',以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系. (Ⅰ)求曲線C'的極坐標(biāo)方程;
(Ⅱ)若過點(diǎn) (極坐標(biāo))且傾斜角為 的直線l與曲線C'交于M,N兩點(diǎn),弦MN的中點(diǎn)為P,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大指出中國(guó)的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.2019年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場(chǎng)分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場(chǎng)調(diào)研知,每輛車售價(jià)5萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

(1)求出2019年的利潤(rùn)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額-成本)

(2)2019年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P(x,y)與一定點(diǎn)F(1,0)的距離和它到一定直線l:x=4的距離之比為
(1)求動(dòng)點(diǎn)P(x,y)的軌跡C的方程;
(2)己知直線l':x=my+1交軌跡C于A、B兩點(diǎn),過點(diǎn)A、B分別作直線l的垂線,垂足依次為點(diǎn)D、E.連接AE、BD,試探索當(dāng)m變化時(shí),直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案