【題目】(題文)已知函數(shù)f(x)=ax2bxc(a>0,bR,cR).

(1)若函數(shù)f(x)的最小值是f(-1)=0,且c=1, F(x)=F(2)+F(-2)的值;

(2)a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.

【答案】(1)8(2)[-2,0].

【解析】

(1)根據(jù)函數(shù)f(x)最小值是f(﹣1)=0,且c=1,求出a,b,c的值,即可求F(2)+F(﹣2)的值;

(2)由于函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R),且a=1,c=0,所以f(x)=x2+bx,進而在滿足|f(x)|≤1在區(qū)間(0,1]恒成立時,求出即可.

(1)由已知c=1,abc=0,且-=-1,

解得a=1,b=2,f(x)=(x+1)2.

F(x)=

F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8.

(2)a=1,c=0,f(x)=x2bx,

從而|f(x)|1在區(qū)間(0,1]上恒成立等價于-1x2bx1在區(qū)間(0,1]上恒成立

bxbx(0,1]上恒成立.

x的最小值為0,-x的最大值為-2.

-2b0.

b的取值范圍是[-2,0].

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1 , M,N分別為AC,BC的中點.
(1)求證:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a為實常數(shù),y=f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=4x++3,則對于y=f(x)在x<0時,下列說法正確的是( 。
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若a,b 是函數(shù) 的兩個不同的零點,且a,b,-2 這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則p+q 的值等于( )
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=2an﹣2n+1 , 若不等式2n2﹣n﹣3<(5﹣λ)ann∈N*恒成立,則整數(shù)λ的最大值為( 。
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于區(qū)間[a,b](a<b),若函數(shù)同時滿足:①在[a,b]上是單調(diào)函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間

(1)求函數(shù)的所有“保值”區(qū)間

(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABCDABCD是平行六面體.

(1)化簡

(2)M是底面ABCD的中心,N是側(cè)面BC C B對角線B C上的分點,設,試求α,β,γ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

同步練習冊答案