分析 (1)由題意及正弦定理,得$a+b+c=\sqrt{3}+1$,且$a+b=\sqrt{3}c$,兩式相減即可得解.
(2)由已知及三角形面積公式可求ab的值,由余弦定理,得cosC的值,結(jié)合∠C是△ABC的內(nèi)角,即可求的C的值.
解答 解:(1)由題意及正弦定理,得$a+b+c=\sqrt{3}+1$,…(2分)
又sinA+sinB=$\sqrt{3}$sinC,故$a+b=\sqrt{3}c$,…(4分)
兩式相減,得c=1.…(6分)
(2)由△ABC的面積$\frac{1}{2}absinC=\frac{1}{3}sinC$,得$ab=\frac{2}{3}$…(9分)
由余弦定理,得$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{{{{(a+b)}^2}-2ab-{c^2}}}{2ab}=\frac{1}{2}$,…(12分)
又∵∠C是△ABC的內(nèi)角…(14分)
∴C=60°.…(16分)
點(diǎn)評 本題主要考查了正弦定理,余弦定理,三角形面積公式的綜合應(yīng)用,熟練掌握公式及定理的應(yīng)用是解題的關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | c<a<b | C. | b<c<a | D. | a<b<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | C${\;}_{6}^{3}$($\frac{1}{2}$)6 | B. | A${\;}_{4}^{2}$($\frac{1}{2}$)6 | C. | C${\;}_{4}^{2}$($\frac{1}{2}$)6 | D. | C${\;}_{4}^{1}$($\frac{1}{2}$)6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (?p)∨q | B. | p∧q | C. | (?p)∧(?q) | D. | (?p)∨(?q) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com