【題目】假設(shè)某種人壽保險規(guī)定,投保人沒活過65歲,保險公司要賠償10萬元;若投保人活過65歲,則保險公司不賠償,但要給投保人一次性支付4萬元已知購買此種人壽保險的每個投保人能活過65歲的概率都為,隨機抽取4個投保人,設(shè)其中活過65歲的人數(shù)為,保險公司支出給這4人的總金額為萬元(參考數(shù)據(jù):)
(1)指出X服從的分布并寫出與的關(guān)系;
(2)求.(結(jié)果保留3位小數(shù))
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),其中.
(Ⅰ)當時,求曲線在處的切線方程;
(Ⅱ)討論的極值點的個數(shù);
(Ⅲ)若在y軸右側(cè)的圖象都不在x軸下方,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦點到短軸的端點的距離為,離心率為.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,過點作平行于軸的直線,交直線于點,求證:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時,恒有f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地要建造一個邊長為2(單位:)的正方形市民休閑公園,將其中的區(qū)域開挖成一個池塘,如圖建立平面直角坐標系后,點的坐標為,曲線是函數(shù)圖像的一部分,過邊上一點在區(qū)域內(nèi)作一次函數(shù)()的圖像,與線段交于點(點不與點重合),且線段與曲線有且只有一個公共點,四邊形為綠化風景區(qū).
(1)求證:;
(2)設(shè)點的橫坐標為,
①用表示、兩點的坐標;
②將四邊形的面積表示成關(guān)于的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市實施二手房新政一年多以來,為了了解新政對居民的影響,房屋管理部門調(diào)查了2018年6月至2019年6月期間購買二手房情況,首先隨機抽取了其中的400名購房者,并對其購房面積(單位:平方米,)講行了一次統(tǒng)計,制成了如圖1所示的頻率分布直方圖,接著調(diào)查了該市2018年6月至2019年6月期間當月在售二手房的均價(單位:萬元/平方米),制成了如圖2所示的散點圖(圖中月份代碼1-13分別對應2018年6月至2019年6月)
(1)試估計該市市民的平均購房面積(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(2)從該市2018年6月至2019年6月期間所有購買二手房的市民中任取3人,用頻率估計概率,記這3人購房面積不低于100平方米的人數(shù)為,求的分布列與數(shù)學期望;
(3)根據(jù)散點圖選擇和兩個模型講行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程,分別為和,并得到一些統(tǒng)計量的值,如表所示:
0.005459 | 0.005886 | |
0.006050 |
請利用相關(guān)系數(shù)判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預測2019年8月份的二手房購房均價(精確到0.001).
參考數(shù)據(jù):,,,,,
參考公式:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com