【題目】如圖,已知四棱錐,是梯形,,,

)證明:平面平面;

)求平面與平面所成的銳二面角的余弦值.

【答案】)證明見解析;(.

【解析】

)取的中點(diǎn),連接,則,連接,先證明,再證明平面,最后得出結(jié)論;

)分別延長(zhǎng)交于,過與點(diǎn),連接為所求的二面角的平面角,在中,求出結(jié)果即可.

)證明:取AD的中點(diǎn)O,連接PO,則,連接OC,

在直角梯形ABCD中,易知,,,

所以

,,所以,所以,

,所以平面ABCD

PO在平面PAD內(nèi),故平面平面ABCD

)如圖,分別延長(zhǎng),交于,過與點(diǎn),連接,

,,所以,由平面平面ABCD

所以平面,

結(jié)合(),則為所求的二面角的平面角,

,

在三角形PDE中,由,,

所以,則,

故平面與平面所成的銳二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,中點(diǎn),側(cè)棱,底面為直角梯形,其中,平面、分別是線段、上的動(dòng)點(diǎn),且.

1)求證:平面;

2)當(dāng)三棱錐的體積取最大值時(shí),求到平面的距離;

3)在(2)的條件下求與平面所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解某產(chǎn)品的獲利情況,將今年17月份的銷售收入(單位:萬元)與純利潤(單位:萬元)的數(shù)據(jù)進(jìn)行整理后,得到如下表格:

月份

1

2

3

4

5

6

7

銷售收入

13

13.5

13.8

14

14.2

14.5

15

純利潤

3.2

3.8

4

4.2

4.5

5

5.5

該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤關(guān)于銷售收入的線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).假設(shè)選取的是2月至6月的數(shù)據(jù).

1)求純利潤關(guān)于銷售收入的線性回歸方程(精確到0.01);

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢驗(yàn)數(shù)據(jù)的誤差均不超過0.1萬元,則認(rèn)為得到的線性回歸方程是理想的.試問該公司所得線性回歸方程是否理想?

參考公式:,,,;參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)長(zhǎng)軸長(zhǎng).

1)設(shè)直線交橢圓兩點(diǎn),求線段的中點(diǎn)坐標(biāo).

2)求過點(diǎn)的直線被橢圓所截弦的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,長(zhǎng)軸的左、右端點(diǎn)分別為,.

1)求橢圓C的方程;

2)設(shè)直線與橢圓C交于P,Q兩點(diǎn),直線,交于S,試問:當(dāng)m變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,請(qǐng)寫出這條直線的方程,并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面ABCD為正方形,,E,F分別是棱PC,AB的中點(diǎn).

1)求證:平面PAD;

2)若,求直線EF與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,函數(shù)

1)求函數(shù)的單調(diào)遞減區(qū)間;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形和矩形所在的平面互相垂直,,,是線段的中點(diǎn).

1)求證:平面;

2)若,求二面角的大;

3)若線段上總存在一點(diǎn),使得,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案