【題目】已知為常數(shù),函數(shù)

(1)當(dāng)時(shí),求函數(shù)的最小值

(2)若有兩個(gè)極值點(diǎn),):

求實(shí)數(shù)的取值范圍;

求證:

【答案】(1);(2,證明見解析.

【解析】

試題分析:(1)由函數(shù)的導(dǎo)數(shù)的符號(hào)可知函數(shù)的單調(diào)性,進(jìn)而求得的最小值;(2有兩個(gè)極值點(diǎn),)可知有兩個(gè)根,即得,再令,求的值域即可;要證即證,即證構(gòu)造函數(shù),利用導(dǎo)數(shù)法求其最大值小于零即可.

試題解析:

(1),定義域?yàn)?/span>,當(dāng)時(shí),,當(dāng)時(shí),所以

(2),由于有兩個(gè)極值點(diǎn),可得有兩個(gè)不同解有兩個(gè)不同解,,,當(dāng)時(shí),,當(dāng)時(shí),,所以,,由數(shù)形結(jié)合可得

要證,即證,即證即證,構(gòu)造函數(shù),注意,,注意,所以,可得,所以單調(diào)遞增,可得,進(jìn)而

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個(gè)從生活垃圾中提煉生物柴油的項(xiàng)目.經(jīng)測(cè)算該項(xiàng)目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:

,且每處理一噸生活垃圾,可得到能利用的生物柴油價(jià)值為200元,若該項(xiàng)目不獲利,政府將給予補(bǔ)貼.

(1)當(dāng)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?

(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx=x﹣a2lnx,aR

I若x=e是y=fx的極值點(diǎn),求實(shí)數(shù)a的值;

若函數(shù)y=fx﹣4e2只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題拋物線的焦點(diǎn)在橢圓.命題直線經(jīng)過(guò)拋物線的焦點(diǎn),且直線過(guò)橢圓的左焦點(diǎn)是真命題.

I求直線的方程;

II直線與拋物線相交于、,直線、,分別切拋物線于,求的交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),求的單調(diào)區(qū)間;

當(dāng)時(shí),的圖象恒在的圖象上方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中

() 在其定義域內(nèi)為單調(diào)遞減函數(shù),求的取值范圍;

() 是否存在實(shí)數(shù),使得當(dāng)時(shí),不等式恒成立,如果存在,求的取值范圍,如果不存在,說(shuō)明理由其中是自然對(duì)數(shù)的底數(shù),=2.71828.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2009年推出一種新型家用轎車,購(gòu)買時(shí)費(fèi)用萬(wàn)元,每年應(yīng)交保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共萬(wàn)元,汽車的維修費(fèi)為:第一年無(wú)維修費(fèi)用,第二年為萬(wàn)元,從第三年起,每年的維修費(fèi)均比上一年增加萬(wàn)元.

1)設(shè)該輛轎車使用的總費(fèi)用(包括購(gòu)買費(fèi)用、保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi)),表達(dá)式;

2)這種汽車使用多少年報(bào)廢最合算即該車使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,平面, ,,中點(diǎn).

(1)求異面直線,所成角的余弦值;

(2)點(diǎn)在線段,且,若直線與平面所成角的正弦值為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

同步練習(xí)冊(cè)答案