直角坐標(biāo)系xoy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則曲線C1
x=t
y=2t
(t為參數(shù))與曲線C2:ρ=2相交構(gòu)成的弦長(zhǎng)為
 
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:曲線C1
x=t
y=2t
(t為參數(shù)),消去參數(shù)可得:y=2x;曲線C2:ρ=2化為x2+y2=4.可得圓心(0,0),半徑r=2.由于直線的經(jīng)過(guò)圓心(0,0),即可得出弦長(zhǎng).
解答: 解:曲線C1
x=t
y=2t
(t為參數(shù)),消去參數(shù)可得:y=2x;
曲線C2:ρ=2化為x2+y2=4.可得圓心(0,0),半徑r=2.
∵直線的經(jīng)過(guò)圓心(0,0),因此相交構(gòu)成的弦長(zhǎng)=直徑4.
故答案為:4.
點(diǎn)評(píng):本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、直線與圓相交弦長(zhǎng)問(wèn)題,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
m2+12
-
y2
4-m2
=1的焦距是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,∠A=
π
3
,BC=3,求△ABC的周長(zhǎng)(用∠B表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1+a2=16且Sn=n+4+2Sn-1
(1)求數(shù)列的通項(xiàng)公式an;
(2)若數(shù)列{bn}滿足bn=nan,其前n項(xiàng)和為Tn,證明:存在唯一的n≠1,使得Tn=22n-17成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:方程(ax+2)(ax-1)=0在[-1,1]上有解;命題q:不等式x2+2ax+2a≥0恒成立,若命題“p或q”是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)盒子里有2個(gè)黑球和m個(gè)白球(m≥2,且m∈N*).現(xiàn)舉行摸獎(jiǎng)活動(dòng):從盒中取球,每次取2個(gè),記錄顏色后放回.若取出2球的顏色相同則為中獎(jiǎng),否則不中.
(Ⅰ)求每次中獎(jiǎng)的概率p(用m表示);
(Ⅱ)若m=3,求三次摸獎(jiǎng)恰有一次中獎(jiǎng)的概率;
(Ⅲ)記三次摸獎(jiǎng)恰有一次中獎(jiǎng)的概率為f(p),當(dāng)m為何值時(shí),f(p)取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)兩函數(shù)f(x)=logax(a>0且a≠1)與g(x)=logbx(b>0且b≠1)的圖象分別是C1和C2
(1)當(dāng)C1與C2關(guān)于x軸對(duì)稱時(shí),求a•b的值;
(2)當(dāng)x∈[2,+∞)時(shí),總有|f(x)|>1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]⊆D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x) 是k型函數(shù).給出下列說(shuō)法:①f(x)=3-
4
x
不可能是k型函數(shù);
②若函數(shù)y=-
1
2
x2+x是3型函數(shù),則m=-4,n=0;
③設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為
4
9
;
④若函數(shù)y=
(a2+a)x-1
a2x
(a≠0)是1型函數(shù),則n-m的最大值為
2
3
3

下列選項(xiàng)正確的是( 。
A、①③B、②③C、②④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)兩正數(shù)x,y滿足約束條件
xy≤128
x
y3
1
2
x3
y
≥32
,則
x2
y
的最大值為( 。
A、1024B、256C、8D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案