【題目】如圖,在四棱錐中,側(cè)棱底面,底面為長方形,且,的中點(diǎn),作于點(diǎn).

(1)證明:平面;

(2)若三棱錐的體積為,求二面角的正弦值.

【答案】(1)見解析;(2).

【解析】分析:(1)推導(dǎo)出,,從而平面,進(jìn)而,再證出,從而平面,再由,能證明平面
(II)由兩兩垂直,以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,利用向量法能求出二面角的正弦值.

詳解:

(1)證明:∵底面,平面

由于底面為長方形

,而

平面

平面

,中點(diǎn),

,

平面

,

平面

(2)由題意易知兩兩垂直,以為坐標(biāo)原點(diǎn),

建立如圖空間直角坐標(biāo)系,可得

設(shè),則有

設(shè)平面的法向量,由,則

,則

由(1)平面

為平面的法向量

設(shè)二面角,則

所以二面角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)命題:(1)異面直線是指空間兩條既不平行也不相交的直線;(2)若直線上有兩點(diǎn)到平面的距離相等,則;(3)若直線與平面內(nèi)無窮多條直線都垂直,則;(4)兩條異面直線中的一條垂直于平面,則另一條必定不垂直于平面.其中正確命題的個(gè)數(shù)是 ( )

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中, 是平行四邊形, , ,點(diǎn)為棱的中點(diǎn),點(diǎn)在棱上,且,平面交于點(diǎn),則異面直線所成角的正切值為__________

【答案】

【解析】

延長的延長線與點(diǎn)Q,連接QEPA于點(diǎn)K,設(shè)QA=x,

,得,則,所以.

的中點(diǎn)為M,連接EM,則,

所以,則,所以AK=.

AD//BC,得異面直線所成角即為,

則異面直線所成角的正切值為.

型】填空
結(jié)束】
17

【題目】在極坐標(biāo)系中,極點(diǎn)為,已知曲線 與曲線 交于不同的兩點(diǎn)

(1)求的值;

(2)求過點(diǎn)且與直線平行的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的對稱軸方程;

2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長為原來的2倍,然后再向左平移個(gè)單位,得到函數(shù)的圖象.若, 分別是三個(gè)內(nèi)角, , 的對邊, , ,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(Ⅰ)求證:AA1⊥平面ABC;

(Ⅱ)求證二面角A1﹣BC1﹣B1的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了弘揚(yáng)民族文化,某校舉行了“我愛國學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了100名考生的成績(得分均為整數(shù),滿足100分)進(jìn)行統(tǒng)計(jì)制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計(jì)概率,回答下列問題.

分組

頻數(shù)

頻率

5

0.05

0.20

35

25

0.25

15

0.15

合計(jì)

100

1.00

(1)求的值并估計(jì)這100名考生成績的平均分;

(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學(xué)校的“我愛國學(xué)”宣傳活動,求其中優(yōu)秀生的人數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求證:函數(shù)在(1+∞)上是增函數(shù);

(Ⅱ)求函數(shù)[1e]上的最小值及相應(yīng)的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 一枚骰子擲一次得到2點(diǎn)的概率為,這說明一枚骰子擲6次會出現(xiàn)一次2點(diǎn)

B. 某地氣象臺預(yù)報(bào)說,明天本地降水的概率為70%,這說明明天本地有70%的區(qū)域下雨,30%的區(qū)域不下雨

C. 某中學(xué)高二年級有12個(gè)班,要從中選2個(gè)班參加活動,由于某種原因,一班必須參加,另外再從二至十二班中選一個(gè)班,有人提議用如下方法:擲兩枚骰子得到的點(diǎn)數(shù)是幾,就選幾班,這是很公平的方法

D. 在一場乒乓球賽前,裁判一般用擲硬幣猜正反面來決定誰先打球,這應(yīng)該說是公平的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)f(x)=(x+l)lnx﹣ax+a (a為正實(shí)數(shù),且為常數(shù))
(1)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案