已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:(1)對(duì)任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)當(dāng)x∈(1,2]時(shí),f(x)=2-x.給出如下結(jié)論:
①對(duì)任意m∈Z,有f(2m)=0;
②存在n∈Z,使得f(2n+1)=9;
③函數(shù)f(x)的值域?yàn)閇0,+∞);
④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”.
其中所有正確結(jié)論的序號(hào)是
 
分析:依據(jù)題中條件注意研究每個(gè)選項(xiàng)的正確性,連續(xù)利用題中第(1)個(gè)條件得到①正確;利用反證法及2x變化如下:2,4,8,16,32,判斷②命題錯(cuò)誤;連續(xù)利用題中第③個(gè)條件得到③正確;據(jù)①③的正確性可得④是正確的.
解答:解:①f(2m)=f(2•2m-1)=2f(2m-1)=…=2m-1f(2)=0,正確;
②f(2n+1)=2n+1-2n-1,假設(shè)存在n使f(2n+1)=9,即存在x1,x22x1-2x2=10,又,2x變化如下:2,4,8,16,32,顯然不存在,所以該命題錯(cuò)誤;
③取x∈(2m,2m+1),則
x
2m
∈(1,2];f(
x
2m
)=2-
x
2m
,f(
x
2
)=…=2m
x
2m
)=2m+1-x
從而f(x)∈[0,+∞),正確
④根據(jù)③的分析容易知道該選項(xiàng)正確;
綜合有正確的序號(hào)是①③④.
故答案為①③④
點(diǎn)評(píng):本題通過抽象函數(shù),考查了函數(shù)的周期性,單調(diào)性,以及學(xué)生的綜合分析能力,難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:
(1)對(duì)任意x∈(0,+∞),恒有f(2x)=2f(x)成立;
(2)當(dāng)x∈(1,2]時(shí)f(x)=2-x給出結(jié)論如下:
①任意m∈Z,有f(2m)=0;
②函數(shù)f(x)的值域?yàn)閇0,+∞);
③存在n∈Z,使得f(2n+1)=9;
④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“存在k∈Z,使得(a,b)⊆(2k,2k-1).
其中所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x)滿足:f(m)+f(n)=f(m•n)對(duì)任意m,n∈(0,+∞)均成立.
(Ⅰ)求f(1)的值;若f(a)=1,求f(
1a
)
的值;
(Ⅱ)若關(guān)于x的方程2f(x+1)=f(kx)有且僅有一個(gè)根,求實(shí)數(shù)k的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)椋?,+∞)函數(shù)f(x)的解析式滿足(x-1)f(x-1)=x2-2x+2.函數(shù)g(x)=
f(x),x>0
f(-x),x<0
,則函數(shù)g(x)在區(qū)間[-2,-
1
2
]上的值域是
[2,
5
2
]
[2,
5
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x),若對(duì)任意x∈(0,+∞),都有f(f(x)+log
1
2
x)=3
,則方程f(x)=2+
x
的解的個(gè)數(shù)是
0
0

查看答案和解析>>

同步練習(xí)冊(cè)答案