【題目】已知函數(shù)f(x)= sin2x﹣ cos2x
(1)求f(x)的最小正周期和單調(diào)增區(qū)間;
(2)若將f(x)的圖象上每一點(diǎn)的橫坐標(biāo)伸長到原來的兩倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,當(dāng)x∈[ ]時,求函數(shù)g(x)的值域.

【答案】
(1)解:∵ = ,

因此f(x)的最小正周期為 =π.

,解得 ,

所以,f(x)的單調(diào)增區(qū)間為


(2)解:將f(x)的圖象上每一點(diǎn)的橫坐標(biāo)伸長到原來的兩倍,縱坐標(biāo)不變,得到函數(shù)g(x)=sin(x﹣ )﹣ 的圖象,

當(dāng)x∈[ ]時,x﹣ ∈[ , ],

sin(x﹣ )∈[ ,1﹣ ],

即函數(shù)g(x)的值域?yàn)閇 ,1﹣ ]


【解析】(1)利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性和單調(diào)性,得出結(jié)論.(2)根據(jù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用正弦函數(shù)的定義域和值域,得出結(jié)論.
【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間共有名工人,隨機(jī)抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(Ⅰ) 根據(jù)莖葉圖計(jì)算樣本均值;

(Ⅱ) 日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間名工人中有幾名優(yōu)秀工人;

(Ⅲ) 從該車間名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),動點(diǎn), 分別在軸, 軸上運(yùn)動, , 為平面上一點(diǎn), ,過點(diǎn)平行于軸交的延長線于點(diǎn).

(Ⅰ)求點(diǎn)的軌跡曲線的方程;

(Ⅱ)過點(diǎn)作軸的垂線,平行于軸的兩條直線, 分別交曲線 兩點(diǎn)(直線不過),交, 兩點(diǎn).若線段中點(diǎn)的軌跡方程為,求的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=sin2(π+x)﹣cos(2π﹣x)+a
(1)求f(x)的值域
(2)若f(x)在(0, )內(nèi)有零點(diǎn),求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(n)=n2sin ),且an=f(n)+f(n+1),則a1+a2+a3+…+a2016的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分別為AC、DC的中點(diǎn).

(1)求證:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為非負(fù)數(shù),其前項(xiàng)和為,且對任意的,都有.

(1)若, ,求的最大值;

(2)若對任意,都有,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間[0, ]上的單調(diào)性;
(3)當(dāng)x∈[0, ]時,關(guān)于x的方程f(x)=a 恰有兩個不同的解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

同步練習(xí)冊答案