設(shè)a>2,給定數(shù)列{an},a1=a,an+1an=an+1+
1
2
a
2
n
(n∈N*)

(1)求證:an>2;
(2)求證:數(shù)列{an}是單調(diào)遞減數(shù)列.
分析:(1)由已知,得出an+1=
an2
2(an-1)
.利用數(shù)學(xué)歸納法證明.
(2)可利用作差比較、作商比較法證明.
解答:證明:(1)由an+1an=an+1+
1
2
a
n
2
(n∈N*)
得an+1=
an2
2(an-1)

用數(shù)學(xué)歸納法證明:
①當(dāng)n=1時(shí),a1=a>2,不等式成立.
②假設(shè)當(dāng)n=k(k≥2)時(shí)不等式成立,即ak>2.
則當(dāng)n=k+1時(shí),ak+1-2=
ak2-4ak+4
2(ak-1)
=
(ak-2)2
2(ak-1)
>0,即ak+1>2
由①②可知an>2成立.
(2)證法一:
an+1-an=
an2
2(an-1)
-an
=
an(2- an )
2(an-1)
<0,
由(1)an>2,∴an+1<an,
∴數(shù)列{an}單調(diào)遞減.
證法二:
由(1)an>2,
an+1
an 
=
an 
2(an-1)
=
1
2(1-
1
an
)
1
2(1-
1
2
)
=1,
∴an+1<an,
∴數(shù)列{an}單調(diào)遞減.
點(diǎn)評(píng):本題考查數(shù)列的函數(shù)性質(zhì),不等式的證明.考查轉(zhuǎn)化、推理、論證能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=
x
2
n
2(xn-1)
(n=1,2…)
求證:
(1)xn>2,且
xn+1
xn
<1(n=1,2…)
;
(2)如果a≤3,那么xn≤2+
1
2n-1
(n=1,2…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>2,給定數(shù)列{an},a1=a,an+1=
an22(an-1)
(n∈N+).求證:an>2,且an+1<an(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>2,給定數(shù)列{xn},其中x 1=a,xn+1=
x
2
n
2(xn-1)
(n∈N*)
求證:
(1)xn>2,且xn+1<xn(n∈N*);
(2)如果2<a≤3,那么xn≤2+
1
2n-1
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年重點(diǎn)中學(xué)模擬理)  (12分)設(shè)a>2,給定數(shù)列求證:

   (1),且

   (2)如果。

查看答案和解析>>

同步練習(xí)冊(cè)答案