【題目】在四棱錐P﹣ABCD中,底面四邊形ABCD是一個菱形,且∠ABC,AB=2,PA⊥平面ABCD.
(1)若Q是線段PC上的任意一點,證明:平面PAC⊥平面QBD.
(2)當(dāng)平面PBC與平面PDC所成的銳二面角的余弦值為時,求PA的長.
【答案】(1)見解析(2)
【解析】
(1)先證明BD⊥平面PAC,再由面面垂直的判定定理即可得證;
(2)建立空間直角坐標(biāo)系,設(shè)P(0,1,a)(a>0),求出平面PBC與平面PDC的法向量,利用向量夾角公式建立關(guān)于a的方程,解出即可.
(1)證明:∵四邊形ABCD是一個菱形,∴AC⊥BD,
又PA⊥平面ABCD,∴PA⊥BD,
又AC∩PA=A,則BD⊥平面PAC,
∵BD在平面QBD內(nèi),
∴平面PAC⊥平面QBD;
(2)設(shè)AC,BD交于點O,分別以OB,OC所在直線為x軸,y軸,以平行于AP的直線為z軸建立如圖所示的空間直角坐標(biāo)系,
則,設(shè)P(0,1,a)(a>0),
則,
設(shè)平面PBC的一個法向量為,
則,則,
同理可求平面PDC的一個法向量為,
∴,解得a2=2,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2xsin2x.
(1)討論f(x)在區(qū)間(0,π)的單調(diào)性;
(2)證明:;
(3)設(shè)n∈N*,證明:sin2xsin22xsin24x…sin22nx≤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)安排4名畢業(yè)生到某企業(yè)的三個部門實習(xí),要求每個部門至少安排1人,其中甲大學(xué)生不能安排到部門工作,安排方法有______種用數(shù)字作答.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的普及,手機(jī)計步軟件迅速流行開來,這類軟件能自動記載每個人每日健步的步數(shù),從而為科學(xué)健身提供一定的幫助.某市工會為了解該市市民每日健步走的情況,從本市市民中隨機(jī)抽取了2000名市民(其中不超過40歲的市民恰好有1000名),利用手機(jī)計步軟件統(tǒng)計了他們某天健步的步數(shù),并將樣本數(shù)據(jù)分為,,,,,,,,九組(單位;千步),將抽取的不超過40歲的市民的樣本數(shù)據(jù)繪制成頻率分布直方圖如圖,將40歲以上的市民的樣本數(shù)據(jù)繪制成頻數(shù)分布表如下,并利用該樣本的頻率分布估計總體的概率分布.
分組(單位 千步) | |||||||||
頻數(shù) | 10 | 20 | 20 | 30 | 400 | 200 | 200 | 100 | 20 |
(1)現(xiàn)規(guī)定,日健步步數(shù)不低于13000步的為“健步達(dá)人”,填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷能否有99.9%的把握認(rèn)為是否為“健步達(dá)人”與年齡有關(guān);
健步達(dá)人 | 非健步達(dá)人 | 總計 | |
40歲以上的市民 | |||
不超過40歲的市民 | |||
總計 |
(2)利用樣本平均數(shù)和中位數(shù)估計該市不超過40歲的市民日健步步數(shù)(單位:千步)的平均數(shù)和中位數(shù);
(3)若日健步步數(shù)落在區(qū)間內(nèi),則可認(rèn)為該市民”運(yùn)動適量”,其中,分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計算可求得頻率分布直方圖中數(shù)據(jù)的標(biāo)準(zhǔn)差約為3.64.若一市民某天的健步步數(shù)為2萬步,試判斷該市民這天是否“運(yùn)動適量”?
參考公式:
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)sincos(ω>0),如果存在實數(shù)x0,使得對任意的實數(shù)x,都有f(x0﹣2020)≤f(x)≤f(x0)成立,則ω的最大值為( )
A.2020B.4040C.1010D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】千百年來,我國勞動人民在生產(chǎn)實踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結(jié)了豐富的“看云識天氣”的經(jīng)驗,并將這些經(jīng)驗編成諺語,如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學(xué)為了驗證“日落云里走,雨在半夜后”,觀察了所在地區(qū)的天日落和夜晚天氣,得到如下列聯(lián)表:
夜晚天氣日落云里走 | 下雨 | 未下雨 |
出現(xiàn) | ||
未出現(xiàn) |
參考公式:.
臨界值表:
(1)根據(jù)上面的列聯(lián)表判斷能否有的把握認(rèn)為“當(dāng)晚下雨”與“‘日落云里走’出現(xiàn)”有關(guān)?
(2)小波同學(xué)為進(jìn)一步認(rèn)識其規(guī)律,對相關(guān)數(shù)據(jù)進(jìn)行分析,現(xiàn)從上述調(diào)查的“夜晚未下雨”天氣中按分層抽樣法抽取天,再從這天中隨機(jī)抽出天進(jìn)行數(shù)據(jù)分析,求抽到的這天中僅有天出現(xiàn)“日落云里走”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求在處的切線方程;
(2)當(dāng)時,討論的單調(diào)性;
(3)若有兩個極值點、,且不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,各項為正的等比數(shù)列的前項和為,,,__________.在①;②;③這三個條件中任選其中一個,補(bǔ)充在橫線上,并完成下面問題的解答(如果選擇多個條件解答,則以選擇第一個解答記分).
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com