精英家教網 > 高中數學 > 題目詳情

【題目】為了響應教育部頒布的《關于推進中小學生研學旅行的意見》,某校計劃開設八門研學旅行課程,并對全校學生的選擇意向進行調查(調查要求全員參與,每個學生必須從八門課程中選出唯一一門課程).本次調查結果整理成條形圖如下.圖中,已知課程A,B,C,D,E為人文類課程,課程F,G,H為自然科學類課程.為進一步研究學生選課意向,結合圖表,采取分層抽樣方法從全校抽取1%的學生作為研究樣本組(以下簡稱“組M”).
(Ⅰ)在“組M”中,選擇人文類課程和自然科學類課程的人數各有多少?
(Ⅱ)為參加某地舉辦的自然科學營活動,從“組M”所有選擇自然科學類課程的同學中隨機抽取4名同學前往,其中選擇課程F或課程H的同學參加本次活動,費用為每人1500元,選擇課程G的同學參加,費用為每人2000元.
(ⅰ)設隨機變量X表示選出的4名同學中選擇課程G的人數,求隨機變量X的分布列;
(ⅱ)設隨機變量Y表示選出的4名同學參加科學營的費用總和,求隨機變量Y的期望.

【答案】解:(Ⅰ)選擇人文類課程的人數為(100+200+400+200+300)×1%=12(人);

選擇自然科學類課程的人數為(300+200+300)×1%=8(人).

(Ⅱ)(。┮李}意,隨機變量X可取0,1,2. ;

故隨機變量X的分布列為

X

0

1

2

p

(ⅱ)法1:依題意,隨機變量Y=2000X+1500(4﹣X)=6000+500X,

所以隨機變量Y的數學期望為

E(Y)=6000+500E(X)

=6000+500(

=6500.

(ⅱ)法2:依題意,隨機變量Y可取6000,6500,7000.

所以隨機變量Y的分布列為

Y

6000

6500

7000

p

所以隨機變量Y的數學期望為

E(Y)= =6500


【解析】(Ⅰ)根據頻率分布直方圖的性質即可得出.(Ⅱ)(ⅰ)依題意,隨機變量X可取0,1,2.利用“超幾何分布列的計算公式與性質”即可得出.(ⅱ)法1:依題意,隨機變量Y=2000X+1500(4﹣X),可得隨機變量Y的數學期望為E(Y)=6000+500E(X).(ⅱ)法2:依題意,隨機變量Y可取6000,6500,7000.求出隨機變量Y的分布列,進而得出數學期望.
【考點精析】本題主要考查了離散型隨機變量及其分布列的相關知識點,需要掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖1所示,在等腰梯形ABCD中, .把△ABE沿BE折起,使得 ,得到四棱錐A﹣BCDE.如圖2所示.
(1)求證:面ACE⊥面ABD;
(2)求平面ABE與平面ACD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,O為AD的中點,射線OP從OA出發(fā),繞著點O順時針方向旋轉至OD,在旋轉的過程中,記∠AOP為x(x∈[0,π]),OP所經過的在正方形ABCD內的區(qū)域(陰影部分)的面積S=f(x),那么對于函數f(x)有以下三個結論,其中不正確的是( )
①f( )=
②函數f(x)在( ,π)上為減函數
③任意x∈[0, ],都有f(x)+f(π﹣x)=4.

A.①
B.③
C.②
D.①②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =( sinωx,1), =(cosωx,cos2ωx+1),設函數f(x)=
(1)若函數f(x)的圖象關于直線x= 對稱,且ω∈[0,3]時,求函數f(x)的單調增區(qū)間;
(2)在(1)的條件下,當 時,函數f(x)有且只有一個零點,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn(n∈N*),滿足Sn=2an﹣1.
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足 ,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內的總濃度.藥物在人體內發(fā)揮治療作用時,該藥物的血藥濃度應介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內血藥濃度及相關信息如圖所示:
根據圖中提供的信息,下列關于成人使用該藥物的說法中,不正確的是(
A.首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用
B.每次服用該藥物1單位,兩次服藥間隔小于2小時,一定會產生藥物中毒
C.每間隔5.5小時服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用
D.首次服用該藥物1單位3小時后,再次服用該藥物1單位,不會發(fā)生藥物中毒

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: ,點P(4,0),過右焦點F作與y軸不垂直的直線l交橢圓C于A,B兩點. (Ⅰ)求橢圓C的離心率;
(Ⅱ)求證:以坐標原點O為圓心與PA相切的圓,必與直線PB相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側面ADD1A1⊥底面ABCD,D1A=D1D= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.

(Ⅰ)求證:A1O∥平面AB1C;
(Ⅱ)求銳二面角A﹣C1D1﹣C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】自2016年1月1日起,我國全面二孩政策正式實施,這次人口與生育政策的歷史性調整,使得“要不要再生一個”“生二孩能休多久產假”等成為千千萬萬個家庭在生育決策上避不開的話題.為了解針對產假的不同安排方案形成的生育意愿,某調查機構隨機抽取了200戶有生育二胎能力的適齡家庭進行問卷調查,得到如下數據:

產假安排(單位:周)

14

15

16

17

18

有生育意愿家庭數

4

8

16

20

26


(1)若用表中數據所得的頻率代替概率,面對產假為14周與16周,估計某家庭有生育意愿的概率分別為多少?
(2)假設從5種不同安排方案中,隨機抽取2種不同安排分別作為備選方案,然后由單位根據單位情況自主選擇.
①求兩種安排方案休假周數和不低于32周的概率;
②如果用ξ表示兩種方案休假周數和.求隨機變量ξ的分布及期望.

查看答案和解析>>

同步練習冊答案