精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=|2x﹣1|﹣2|x﹣1|.
(1)作出函數f(x)的圖象;
(2)若不等式 ≤f(x)有解,求實數a的取值范圍.

【答案】
(1)解:令2x﹣1=0,得x= ,

令x﹣1=0,得x=1;

當x< 時,函數f(x)=|2x﹣1|﹣2|x﹣1|=﹣(2x﹣1)+2(x﹣1)=﹣1;

≤x≤1時,函數f(x)=|2x﹣1|﹣2|x﹣1|=(2x﹣1)+2(x﹣1)=4x﹣3;

當x>1時,函數f(x)=|2x﹣1|﹣2|x﹣1|=(2x﹣1)﹣2(x﹣1)=1;

∴f(x)= ,

作出函數f(x)的圖象,如圖所示;


(2)解:由函數f(x)的圖象知,f(x)的最大值是1,

所以不等式 ≤f(x)有解,等價于 ≤1有解,

不等式 ≤1可化為 ﹣1≤0

(2a﹣1)(a﹣1)≥0(a≠1),解得a≤ 或a>1,

所以實數a的取值范圍是(﹣∞, ]∪(1,+∞)


【解析】(1)去掉絕對值,化簡函數f(x),作出函數f(x)的圖象即可;(2)由函數f(x)的圖象知函數的最大值是1,問題等價于 ≤1有解, 求出解集即可.
【考點精析】解答此題的關鍵在于理解絕對值不等式的解法的相關知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知兩直線l1mx+8yn=0和l2:2xmy-1=0.試確定m,n的值,使

(1)l1l2相交于點P(m,-1);則m____,n_______

(2)l1l2.則_________________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)是定義在區(qū)間(0,+∞)內的單調函數,且對x∈(0,∞),都有f[f(x)﹣lnx]=e+1,設f′(x)為f(x)的導函數,則函數g(x)=f(x)﹣f′(x)的零點個數為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的短軸長為2,過上頂點E和右焦點F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l過點(1,0),且與橢圓C交于點A,B,則在x軸上是否存在一點T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標原點),若存在,求出 t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知關于的不等式,解集為.

(1)若,求的值.

(2)解關于的不等式,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】點M(3,2)到拋物線C:y=ax2(a>0)準線的距離為4,F為拋物線的焦點,點N(l,l),當點P在直線l:x﹣y=2上運動時, 的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (a,b∈R,且a≠0,e為自然對數的底數).
(1)若曲線f(x)在點(e,f(e))處的切線斜率為0,且f(x)有極小值,求實數a的取值范圍.
(2)①當 a=b=l 時,證明:xf(x)+2<0; ②當 a=1,b=﹣1 時,若不等式:xf(x)>e+m(x﹣1)在區(qū)間(1,+∞)內恒成立,求實數m的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,直線l:y=x+2與以原點為圓心、橢圓C的短半軸為半徑的圓O相切.
(1)求橢圓C的方程;
(2)過橢圓C的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形,求直線m的斜率k的取值范圍.

查看答案和解析>>

同步練習冊答案