在一次飛機(jī)航程中調(diào)查男女乘客的暈機(jī)情況,在80名男性乘客中,其中有10人暈機(jī),70人不暈機(jī);而在30名女性乘客中有10人暈機(jī),其它20人不暈機(jī).
(1)請(qǐng)根據(jù)題設(shè)數(shù)據(jù)完成如下列聯(lián)表;
  暈機(jī) 不暈機(jī) 合計(jì)
     
     
合計(jì)      
(2)判斷暈機(jī)與性別是否有關(guān)?
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)根據(jù)二維條形圖所給的暈機(jī)和不暈機(jī)中男和女的人數(shù),畫出列聯(lián)表.
(2)根據(jù)列聯(lián)表中所給的數(shù)據(jù),代入求觀測(cè)值的公式,求出這組數(shù)據(jù)的觀測(cè)值,把觀測(cè)值同臨界值表中的臨界值進(jìn)行比較,得到暈機(jī)與性別的關(guān)系.
解答: 解:(1)請(qǐng)根據(jù)題設(shè)數(shù)據(jù)完成如下列聯(lián)表;
暈機(jī) 不暈機(jī) 合計(jì)
10 70 80
10 20 30
合計(jì) 20 90 110
…(6分)
(2)根據(jù)列聯(lián)表所給的數(shù)據(jù)代入觀測(cè)值的公式得到
K2=
110×(10×20-70×10)2
20×90×30×80
≈6.37>5.024
∴有1-0.025=97.5%的把握認(rèn)為暈機(jī)與性別有關(guān).
點(diǎn)評(píng):本題考查獨(dú)立性檢驗(yàn),考查學(xué)生的計(jì)算能力,是一個(gè)基礎(chǔ)題,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(1-x)3(1+x)8的展開(kāi)式中,含x2項(xiàng)的系數(shù)是n,若(8-nx)n=a0+a1x+a2x2+…+anxn,則a0+a1+a2+…+an=( 。
A、0B、1
C、-1D、157

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩名運(yùn)動(dòng)員參加“選拔測(cè)試賽”,在相同條件下,兩人5次測(cè)試的成績(jī)(單位:分)記錄如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一名運(yùn)動(dòng)員參加比賽,你認(rèn)為選派誰(shuí)參賽更好?說(shuō)明理由(不用計(jì)算);
(Ⅲ)若從甲、乙兩人的5次成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:
(1)請(qǐng)指出該程序框圖所使用的邏輯結(jié)構(gòu).
(2)試寫出y=f(x)的解析式.
(3)若要使輸入的x值與輸出的y值相等,則輸入的x的值的集合為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是不相等的正數(shù),在a,b之間分別插入m個(gè)正數(shù)a1,a2,…,am和正數(shù)b1,b2,…,bm,使a,a1,a2,…,am,b是等差數(shù)列,a,b1,b2,…,bm,b是等比數(shù)列.
(1)若m=5,
a3
b3
=
5
4
,求
b
a
的值;
(2)若b=λa(λ∈N*,λ≥2),如果存在n (n∈N*,6≤n≤m)使得an-5=bn,求λ的最小值及此時(shí)m的值;
(3)求證:an>bn(n∈N*,n≤m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=
1-x2
2+x
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x2+2x+3,
(1)求f(0)的值;
(2)若函數(shù)g(x)滿足g(x-1)=
x+1
x2+1
,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有甲,乙兩班進(jìn)行數(shù)學(xué)考試,按照大于等于80分為優(yōu)秀,80分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得列聯(lián)表,已知全部100人中隨機(jī)抽取1人為優(yōu)秀的概率為
2
5
  優(yōu)秀 非優(yōu)秀 合計(jì)
甲班 15    
乙班   25  
合計(jì)     100
本題可以參考獨(dú)立性檢驗(yàn)臨界值表
P( K2≥k0 0.25 0.15 0.10 0.05 0.025 0.010 0.005
 k0 1.323 2.072 2.706 3.841 5.024 6.635 7.879
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表中數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為“成績(jī)優(yōu)秀與班級(jí)有關(guān)系”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
a
x
,其中常數(shù)a>0
(1)證明:函數(shù)f(x)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù);
(2)利用(1)的結(jié)論,求函數(shù)y=x+
20
x
(x∈[4,6])的值域;
(3)借助(1)的結(jié)論,試指出函數(shù)g(x)=
-7x
x2
+x+1(x>0)
的單調(diào)區(qū)間,不必證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案