【題目】如圖,在三角形中,,平面與半圓弧所在的平面垂直,點(diǎn)為半圓弧上異于的動(dòng)點(diǎn),為的中點(diǎn).
(1)求證:;
(2)求三棱錐體積的最大值.
【答案】(1)見(jiàn)解析;(2).
【解析】
(1)由題意可知平面,則,又,再根據(jù)線面垂直的判定與性質(zhì)即可得出結(jié)論;
(2)由題意得,由此可得當(dāng)為半圓弧的中點(diǎn)時(shí)體積有最大值,從而求出答案.
(1)證\:因?yàn)槠矫?/span>與半圓所在的平面垂直,交線為,
又,即,所以垂直于半圓所在平面,
而在半圓平面內(nèi),故,
又為直徑,點(diǎn)為半圓弧上一點(diǎn),故,
且,因此平面,
又平面,所以;
(2)解:由題意知,點(diǎn)為的中點(diǎn),
所以點(diǎn)到半圓面的距離是點(diǎn)到半圓面距離的一半,
因此,
而(其中為點(diǎn)到的距離),
當(dāng)點(diǎn)為半圓弧的中點(diǎn)時(shí),最大,且最大值為1,
因此的最大值為2,
故三棱錐體積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】談祥柏先生是我國(guó)著名的數(shù)學(xué)科普作家,他寫(xiě)的《數(shù)學(xué)百草園》、《好玩的數(shù)學(xué)》、《故事中的數(shù)學(xué)》等書(shū),題材廣泛、妙趣橫生,深受廣大讀者喜愛(ài).下面我們一起來(lái)看《好玩的數(shù)學(xué)》中談老的一篇文章《五分鐘內(nèi)挑出埃及分?jǐn)?shù)》:文章首先告訴我們,古埃及人喜歡使用分子為1的分?jǐn)?shù)(稱為埃及分?jǐn)?shù)).如用兩個(gè)埃及分?jǐn)?shù)與的和表示等.從這100個(gè)埃及分?jǐn)?shù)中挑出不同的3個(gè),使得它們的和為1,這三個(gè)分?jǐn)?shù)是________.(按照從大到小的順序排列)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多有創(chuàng)意的求法,如著名的普豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)120名同學(xué)每人隨機(jī)寫(xiě)下一個(gè)x,y都小于1的正實(shí)數(shù)對(duì),再統(tǒng)計(jì)其中x,y能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù)m,最后根據(jù)統(tǒng)計(jì)個(gè)數(shù)m估計(jì)的值.如果統(tǒng)計(jì)結(jié)果是,那么可以估計(jì)的值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知傾斜角為的直線過(guò)點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為,直線與曲線分別交于、兩點(diǎn).
(1)寫(xiě)出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤(pán)游戲都需擊鼓三次,每次擊鼓后要么出現(xiàn)一次音樂(lè),要么不出現(xiàn)音樂(lè);每盤(pán)游戲擊鼓三次后,出現(xiàn)三次音樂(lè)獲得150分,出現(xiàn)兩次音樂(lè)獲得100分,出現(xiàn)一次音樂(lè)獲得50分,沒(méi)有出現(xiàn)音樂(lè)則獲得-300分.設(shè)每次擊鼓出現(xiàn)音樂(lè)的概率為,且各次擊鼓出現(xiàn)音樂(lè)相互獨(dú)立.
(1)若一盤(pán)游戲中僅出現(xiàn)一次音樂(lè)的概率為,求的最大值點(diǎn);
(2)以(1)中確定的作為的值,玩3盤(pán)游戲,出現(xiàn)音樂(lè)的盤(pán)數(shù)為隨機(jī)變量,求每盤(pán)游戲出現(xiàn)音樂(lè)的概率,及隨機(jī)變量的期望;
(3)玩過(guò)這款游戲的許多人都發(fā)現(xiàn),若干盤(pán)游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒(méi)有增加反而減少了.請(qǐng)運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識(shí)分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C:=1(a>0,b>0)的左右焦點(diǎn)為F1,F2過(guò)點(diǎn)F1的直線l與雙曲線C的左支交于AB兩點(diǎn),△BF1F2的面積是△AF1F2面積的三倍,∠F1AF2=90°,則雙曲線C的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科站技術(shù)員為了解某品種樹(shù)苗的生長(zhǎng)情況,在該批樹(shù)苗中隨機(jī)抽取一個(gè)容量為100的樣本,測(cè)量樹(shù)苗高度(單位:).經(jīng)統(tǒng)計(jì),高度在區(qū)間內(nèi),將其按,,,,,分成6組,制成如圖所示的頻率分布直方圖,其中高度不低于的樹(shù)苗為優(yōu)質(zhì)樹(shù)苗.
附:
,其中
(1)求頻率分布直方圖中的值;
(2)已知所抽取的這100棵樹(shù)苗來(lái)自于甲、乙兩個(gè)地區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表所示,將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有%的把握認(rèn)為優(yōu)質(zhì)樹(shù)苗與地區(qū)有關(guān)?
甲地區(qū) | 乙地區(qū) | 合計(jì) | |
優(yōu)質(zhì)樹(shù)苗 | 5 | ||
非優(yōu)質(zhì)樹(shù)苗 | 25 | ||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),下述四個(gè)結(jié)論:
①是偶函數(shù);
②的最小正周期為;
③的最小值為0;
④在上有3個(gè)零點(diǎn)
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有橡皮泥制作的底面半徑為5,高為9的圓錐和底面半徑為,高為8的圓柱各一個(gè).若將它們重新制作成總體積與各自的高均保持不變,但底面半徑相同的新的圓錐與圓柱各一個(gè),則新的底面半徑為_________;若新圓錐的內(nèi)接正三棱柱表面積取到最大值,則此正三棱柱的底面邊長(zhǎng)為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com