如圖,,為圓柱的母線(xiàn),是底面圓的直徑,分別是,的中點(diǎn),
(1)證明:;
(2)證明:;
(3)假設(shè)這是個(gè)大容器,有條體積可以忽略不計(jì)的小魚(yú)能在容器的任意地方游弋,如果魚(yú)游到四棱錐 內(nèi)會(huì)有被捕的危險(xiǎn),求魚(yú)被捕的概率.

(1)參考解析;(2)參考解析;(3)

解析試題分析:(1)由于點(diǎn)E是A1C是的中點(diǎn),點(diǎn)O是BC的中點(diǎn),連接OE,OA,由三角形的中位線(xiàn)可得OE∥BB1,并且OE=.又,并且.所以EO與DA平行且相等.所以四邊形EOAD是平行四邊形.所以DE∥AO.即可得到結(jié)論.
(2)由是母線(xiàn),所以平面ABC.所以可得,又BC是圓得直徑,所以.由此可得結(jié)論.
(3)由,即可得到.即.所以.設(shè)圓的半徑為r,圓柱的高為h,所以.圓柱的體積為.所以魚(yú)被捕的概率為.
(1)證明:連結(jié),分別為的中點(diǎn),∴
,且.∴四邊形是平行四邊形,
.∴.       4分
(2) 證明:,為圓柱的母線(xiàn),所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d2/5/xhyex.png" style="vertical-align:middle;" />垂直于圓所在平面,故,
是底面圓的直徑,所以,,所以
,所以.  8分
(3)解:魚(yú)被捕的概率等于四棱錐與圓柱的體積比,
,且由(1)知.∴,
,∴
是底面圓的直徑,得,且,
,即為四棱錐的高.設(shè)圓柱高為,底半徑為,
,
,即 .    12分
考點(diǎn):1.線(xiàn)面平行.2.線(xiàn)面垂直.3.體積的計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,邊長(zhǎng)為2的正方形ACDE所在的平面與平面ABC垂直,AD與CE的交點(diǎn)為M,,且AC=BC.
(1)求證:平面EBC;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
如圖,四棱錐中,為矩形,平面平面.
求證:

問(wèn)為何值時(shí),四棱錐的體積最大?并求此時(shí)平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在四棱錐P-ABCD中,四邊形ABCD為菱形,△PAD為等邊三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E為AD的中點(diǎn).

(1)求證:AD⊥PB;
(2)求點(diǎn)E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,所在平面互相垂直,且,E、F、G分別為AC、DC、AD的中點(diǎn).
(1)求證:平面BCG;
(2)求三棱錐D-BCG的體積.
附:椎體的體積公式,其中S為底面面積,h為高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且
(1)求證:EF∥平面BDC1;  
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)(2011•重慶)如圖,在四面體ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°

(Ⅰ)若AD=2,AB=2BC,求四面體ABCD的體積.
(Ⅱ)若二面角C﹣AB﹣D為60°,求異面直線(xiàn)AD與BC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱的側(cè)棱平面,為等邊三角形,側(cè)面是正方形,的中點(diǎn),是棱上的點(diǎn).

(1)若是棱中點(diǎn)時(shí),求證:平面;
(2)當(dāng)時(shí),求正方形的邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)面底面
(Ⅰ)若分別為,中點(diǎn),求證:∥平面;
(Ⅱ)求證:;
(Ⅲ)若,求證:平面平面

查看答案和解析>>

同步練習(xí)冊(cè)答案