【題目】一個正方體的平面展開圖如圖所示,在這個正方體中,點是棱的中點,,分別是線段,(不包含端點)上的動點,則下列說法正確的是( )
A.在點的運動過程中,存在
B.在點的運動過程中,存在
C.三棱錐的體積為定值
D.三棱錐的體積不為定值
【答案】BC
【解析】
由異面直線的判斷方法,可判斷;運用線面垂直的判斷與性質(zhì)定理可判斷;由棱錐的體積公式和線面距離與點面距離的關(guān)系,可判斷,.
解:由平面展開圖,還原正方體,如圖所示.對于A選項,因為點是線段上的動點,所以平面,因為平面,且與平面不平行,所以不存在.故A錯誤;
對于B選項.連接,,連接,,取的中點,連接,.則為的中點,,所以,,,四點共面,因為,,所以平面,因為平面,所以,即當點運動到點時,,故B正確;
對于C選項,因為點是棱的中點,所以,因為平面,平面,所以平面,則直線上的任意一點到平面的距離相等,且為定值,因為點是線段上的動點,所以點到平面的距離為定值,因為的面積為定值,所以(定值),故C正確;
對于D選項,因為點是線段上的動點。所以的面積為定值,且平面就是平面,因為點到平面的距離是定值,即點到平面的距離也是定值,所以三棱錐的體積(定值),故D錯誤.
故選:BC
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=n2+pn,且a4,a7,a12成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運用祖暅原理計算球的體積時,夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任意一個平面所截,若截面面積都相等,則這兩個幾何體的體積相等.構(gòu)造一個底面半徑和高都與球的半徑相等的圓柱,與半球(如圖①)放置在同一平面上,然后在圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐后得到一新幾何體(如圖②),用任何一個平行于底面的平面去截它們時,可證得所截得的兩個截面面積相等,由此可證明新幾何體與半球體積相等.現(xiàn)將橢圓繞y軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體(如圖③),類比上述方法,運用祖暅原理可求得其體積等于( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在3世紀中期,我國古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中提出了割圓術(shù):“割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”.這可視為中國古代極限觀念的佳作.割圓術(shù)可以視為將一個圓內(nèi)接正邊形等分成個等腰三角形(如圖所示),當變得很大時,等腰三角形的面積之和近似等于圓的面積.運用割圓術(shù)的思想,可得到sin3°的近似值為( )(取近似值3.14)
A.0.012B.0.052
C.0.125D.0.235
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,,在底面上的投影為的中點,.有下列結(jié)論:
①三棱錐的三條側(cè)棱長均相等;
②的取值范圍是;
③若三棱錐的四個頂點都在球的表面上,則球的體積為;
④若,是線段上一動點,則的最小值為.
其中所有正確結(jié)論的編號是( )
A.①②B.②③C.①②④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正三角形中,E為邊的中點,過E作于D.把沿翻折至的位置,連結(jié).翻折過程中,其中正確的結(jié)論是( )
A.;
B.存在某個位置,使;
C.若,則的長是定值;
D.若,則四面體的體積最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在上不單調(diào),求a的取值范圍;
(2)當時,記的兩個零點是
①求a的取值范圍;
②證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com