【題目】某校學生會為了解高二年級600名學生課余時間參加中華傳統(tǒng)文化活動的情況(每名學生最多參加7場).隨機抽取50名學生進行調查,將數(shù)據(jù)分組整理后,列表如下:

參加場數(shù)

0

1

2

3

4

5

6

7

占調查人數(shù)的百分比

8%

10%

20%

26%

18%

m%

4%

2%

則以下四個結論中正確的是( )

A.表中m的數(shù)值為10

B.估計該年級參加中華傳統(tǒng)文化活動場數(shù)不高于2場的學生約為108人

C.估計該年級參加中華傳統(tǒng)文化活動場數(shù)不低于4場的學生約為216人

D.若采用系統(tǒng)抽樣方法進行調查,從該校高二600名學生中抽取容量為30的樣本,則分段間隔為15

【答案】C

【解析】

根據(jù)系統(tǒng)抽樣的定義分別進行判斷即可.

解:,得,故錯誤,

活動次數(shù)不高于2場的學生約,即約為168人,故錯誤,

參加傳統(tǒng)文化活動次數(shù)不低于4場的學生為人,故是正確的;

中的分段間隔應為,故錯誤,

故選:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】十七世紀法國數(shù)學家費馬提出猜想:“當整數(shù)時,關于的方程沒有正整數(shù)解”.經(jīng)歷三百多年,于二十世紀九十年中期由英國數(shù)學家安德魯懷爾斯證明了費馬猜想,使它終成費馬大定理,則下面說法正確的是( )

A. 存在至少一組正整數(shù)組使方程有解

B. 關于的方程有正有理數(shù)解

C. 關于的方程沒有正有理數(shù)解

D. 當整數(shù)時,關于的方程沒有正實數(shù)解

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列滿足:對于,都有為常數(shù)),則稱數(shù)列是公差為隔項等差數(shù)列.

)若,是公差為8隔項等差數(shù)列,求的前項之和;

)設數(shù)列滿足:,對于,都有

求證:數(shù)列隔項等差數(shù)列,并求其通項公式;

設數(shù)列的前項和為,試研究:是否存在實數(shù),使得成等比數(shù)列(?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某科室安排甲、乙、丙、丁四人國慶節(jié)放假期間(共放假八天)的值班表.已知甲、乙各值班四天,甲不能在第一天值班且甲、乙不在同一天值班;丙需要值班三天,且不能連續(xù)值班;丁需要值班五天;規(guī)定每天必須兩人值班.則符合條件的不同方案共有( )種.

A. 400 B. 700 C. 840 D. 960

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點到直線的距離為.

(1)求拋物線的標準方程;

(2)設點是拋物線上的動點,若以點為圓心的圓在軸上截得的弦長均為4,求證:圓恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知動點M與到點N(3,0)的距離比動點M到直線x=-2的距離大1,記動圓M的軌跡為曲線C.

(1)求曲線C的方程;

(2)若直線l與曲線C相交于A,B:兩點,且(O為坐標原點),證明直線l經(jīng)過定點H,并求出H點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】陜西理工大學開展大學生社會實踐活動,用“10分制”隨機調查漢臺區(qū)某社區(qū)居民的幸福指數(shù),現(xiàn)從調查人群中隨機抽取16人,如圖所示的莖葉圖記錄了他們的幸福指數(shù)的得分以小數(shù)點的前一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉

寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

若幸福指數(shù)不低于9分,則稱該人的幸福指數(shù)為“極幸!;若幸福指數(shù)不高于8分,則稱該人的幸福指數(shù)為“不夠幸!現(xiàn)從這16人中幸福指數(shù)為“極幸!焙汀安粔蛐腋!钡娜酥腥我膺x取2人,求選出的兩人的幸福指數(shù)均為“極幸福”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)x2mlnx,h(x)x2xa.

(1)a0時,f(x)h(x)(1,+∞)上恒成立,求實數(shù)m的取值范圍;

(2)m2時,若函數(shù)k(x)f(x)h(x)在區(qū)間(1,3)上恰有兩個不同零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在一個周期內的圖象如下圖所示.

1)求函數(shù)的解析式;

2)設,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍和這兩個根的和.

查看答案和解析>>

同步練習冊答案