【題目】已知F1,F2為橢圓E:y2=1的左、右焦點(diǎn),過(guò)點(diǎn)P(﹣2,0)的直線l與橢圓E有且只有一個(gè)交點(diǎn)T.
(1)求△F1TF2的面積;
(2)求證:光線被直線反射后經(jīng)過(guò)F2.
【答案】(1);(2)見解析
【解析】
(1)設(shè)過(guò)的直線方程與橢圓聯(lián)立,判別式等于零求出斜率,并求出的坐標(biāo),進(jìn)而求出面積;(2)求出關(guān)于直線的對(duì)稱點(diǎn)F1',寫出直線F1'T的方程,則得出直線過(guò)點(diǎn).
(1)由題意得,直線l的斜率存在且不為零,
設(shè)直線l的方程為:y=k(x+2),代入橢圓整理得:
(1+2k2)x2+8k2x+8k2﹣2=0,
所以△=64k4﹣8(1+2k2)(4k2﹣1)=8(1﹣2k2)=0,
解得k,則x=﹣1,
所以T(﹣1,),
又(﹣1,0),F2(1,0),
所以|F1F2||y|.
(2)證明:由對(duì)稱性,設(shè)切點(diǎn)T(﹣1,).此時(shí)直線l的方程為:y(x+1)即x2=0,
設(shè)點(diǎn)F1(﹣1,0)關(guān)于l的對(duì)稱點(diǎn)為F1'(x0,y0),則,
解得:’所以F1'(,),
所以直線F1'T的方程為:y(x+1),
即yx,
當(dāng)y=0時(shí),x=1,
所以光線被直線l反射后經(jīng)過(guò)F2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為F,點(diǎn)B是橢圓C的短軸的一個(gè)端點(diǎn),ΔOFB的面積為,橢圓C上的兩點(diǎn)H、G關(guān)于原點(diǎn)O對(duì)稱,且、的等差中項(xiàng)為2
(1)求橢圓的方程;
(2)是否存在過(guò)點(diǎn)M(2,1)的直線與橢圓C交于不同的兩點(diǎn)P、Q,且使得成立?若存在,試求出直線的方程;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線上,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|3x﹣4|﹣|x+1|.
(1)解不等式f(x)>5;
(2)若存在實(shí)數(shù)x滿足ax+a≥f(x)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,給出下列命題:
①若m∥n,n⊥β,mα,則α⊥β;
②若α⊥β,α∩β=m,n⊥m,則n⊥α或n⊥β;
③若m⊥α,m⊥n,nβ,則α∥β或α⊥β;
④若α∩β=m,n∥m,nα,nβ,則n∥α且n∥β;
其中正確命題的序號(hào)是( )
A.①②B.①③C.①④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)a=3時(shí),求函數(shù)在上的最大值和最小值;
(Ⅱ)求函數(shù)的定義域,并求函數(shù)的值域.(用a表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
(1)求函數(shù)f(x)在x∈[﹣1,2]上的最大值和最小值;
(2)若對(duì)于任意x∈[﹣1,2]都有f(x)<m成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓將圓的圓周分為四等份,且橢圓的離心率為.
(1)求橢圓的方程;
(2)若直線與橢圓交于不同的兩點(diǎn),且的中點(diǎn)為,線段的垂直平分線為,直線與軸交于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(其中α為參數(shù)),曲線C2:(x﹣1)2+y2=1,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;
(2)若射線θ=(ρ>0)與曲線C1,C2分別交于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com