【題目】已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【答案】(1)(2)

【解析】

1)根據(jù)函數(shù)在上單調(diào)遞減轉(zhuǎn)化為上恒成立問題,再通過(guò)不等式恒成立條件求解即可

2)令,根據(jù)在區(qū)間上,函數(shù)的圖象恒在曲線下方轉(zhuǎn)化成在區(qū)間上恒成立,求得,分別對(duì)進(jìn)行分類討論,結(jié)合正負(fù)判斷單調(diào)性,再結(jié)合恒成立問題進(jìn)一步求解即可

解:(1)在區(qū)間上單調(diào)遞減,

在區(qū)間上恒成立.

,而當(dāng)時(shí),,故

所以

(2)令,定義域?yàn)?/span>.

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.

①若,令,得極值點(diǎn),,

當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

當(dāng),即時(shí),同理可知,在區(qū)間上,

,也不合題意;

②若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是

綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)遞增區(qū)間.

(2)在ΔABC中,角A,B,C所對(duì)的邊分別為a,bc,若f(A)=1,c=10,cosB=,求ΔABC的中線AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:

①命題“若,則”的逆否命題;

②“,使得”的否定是:“,均有”;

③命題“”是“”的充分不必要條件;

,,為真命題.

其中真命題的序號(hào)是________.(填寫所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)的圖象與軸相切.

(1)求實(shí)數(shù)a的值;

(2)求的單調(diào)區(qū)間;

(3)當(dāng)時(shí),恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】萊昂哈德·歐拉,瑞士數(shù)學(xué)家、自然科學(xué)家.歲時(shí)入讀巴塞爾大學(xué),歲大學(xué)畢業(yè),歲獲得碩士學(xué)位,他是數(shù)學(xué)史上最多產(chǎn)的數(shù)學(xué)家.其中之一就是他發(fā)現(xiàn)并證明歐拉公式,從而建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系.若將其中的取作就得到了歐拉恒等式,它是數(shù)學(xué)里令人著迷的一個(gè)公式,它將數(shù)學(xué)里最重要的幾個(gè)量聯(lián)系起來(lái):兩個(gè)超越數(shù):自然對(duì)數(shù)的底數(shù),圓周率;兩個(gè)單位:虛數(shù)單位和自然數(shù)單位;以及被稱為人類偉大發(fā)現(xiàn)之一的,數(shù)學(xué)家評(píng)價(jià)它是“上帝創(chuàng)造的公式”請(qǐng)你根據(jù)歐拉公式:,解決以下問題:

1)試將復(fù)數(shù)寫成,是虛數(shù)單位)的形式;

2)試求復(fù)數(shù)的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個(gè)醫(yī)療分隊(duì),平均分到甲、乙兩個(gè)村進(jìn)行義務(wù)巡診,其中每個(gè)分隊(duì)都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有

A. 72種 B. 36種 C. 24種 D. 18種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為實(shí)數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個(gè)極值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題,為了了解聲音強(qiáng)度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測(cè)量得到的聲音強(qiáng)度和聲音能量,2,10)數(shù)據(jù)作了初步處理,得到如圖散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為聲音強(qiáng)度關(guān)于聲音能量的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)

2)根據(jù)表中數(shù)據(jù),求聲音強(qiáng)度關(guān)于聲音能量的回歸方程.

參考公式:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】菜市房管局為了了解該市市民2018年1月至2019年1月期間購(gòu)買二手房情況,首先隨機(jī)抽樣其中200名購(gòu)房者,并對(duì)其購(gòu)房面積(單位:平方米,)進(jìn)行了一次調(diào)查統(tǒng)計(jì),制成了如圖1所示的頻率分布南方匿,接著調(diào)查了該市2018年1月﹣2019年1月期間當(dāng)月在售二手房均價(jià)(單位:萬(wàn)元/平方米),制成了如圖2所示的散點(diǎn)圖(圖中月份代碼1﹣13分別對(duì)應(yīng)2018年1月至2019年1月).

(1)試估計(jì)該市市民的平均購(gòu)房面積

(2)現(xiàn)采用分層抽樣的方法從購(gòu)房耐積位于的40位市民中隨機(jī)取4人,再?gòu)倪@4人中隨機(jī)抽取2人,求這2人的購(gòu)房面積恰好有一人在的概率.

(3)根據(jù)散點(diǎn)圖選擇兩個(gè)模型進(jìn)行擬合,經(jīng)過(guò)數(shù)據(jù)處理得到兩個(gè)回歸方程,分別為,并得到一些統(tǒng)計(jì)量的值,如表所示:

請(qǐng)利用相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好,并用擬合效果更好的模型預(yù)測(cè)2019年6月份的二手房購(gòu)房均價(jià)(精確到).

參考數(shù)據(jù):,,,,,,.參考公式:相關(guān)指數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案