已知函數(shù)f(x)=asinx+cosx-1的最大值是0.
(1)求證:a=0;
(2)若f(x+
π
4
)=-
1
3
,求sin2x的值.
考點:同角三角函數(shù)基本關系的運用
專題:三角函數(shù)的求值
分析:(1)利用輔角公式化簡解析式可得f(x)=
a2+1
sin(x+φ)-1,其中tanφ=
1
a
,由已知即可求a的值為0.
(2)由(1)可得f(x)=cosx-1,從而由已知可解得cosx-sinx=
2
2
3
,即可求得sin2x的值.
解答: 解:(1)∵f(x)=asinx+cosx-1=
a2+1
sin(x+φ)-1,其中tanφ=
1
a
,
∵函數(shù)f(x)=asinx+cosx-1的最大值是0.
a2+1
=1,即可解得a=0.
(2)由(1)可得f(x)=cosx-1
∴f(x+
π
4
)=cos(x+
π
4
)-1=-
1
3
,可解得cosx-sinx=
2
2
3
,
∴兩邊平方可得:1-sin2x=
8
9
,
∴sin2x=
1
9
點評:本題主要考察了同角三角函數(shù)基本關系的運用,合理應用輔角公式化簡是解題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將分針撥慢15分鐘,則分針轉(zhuǎn)過的弧度數(shù)是(  )
A、-
π
3
B、
π
3
C、-
π
2
D、
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合M={x|x 2+3x+2<0},集合N={x|(
1
2
x≤4},則 M∪N=( 。
A、{ x|x≥-2}
B、{ x|x>-1}
C、{ x|x<-1}
D、{ x|x≤-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinx=
3
5
,x∈(
π
2
,π),求sin(x+
π
4
)及cos2x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C所對應的邊,∠C=90°,則
a+b
c
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平行四邊形ABCD中,M,N是線段BC,CD的中點,若
AC
=m
BN
+n
DM
,則m+n=( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+(a-2)x-2a+4,g(x)=3x2+ax-2a.
(1)若函數(shù)f(x)為偶函數(shù),求函數(shù)g(x)在[-a,a+2]上的值域;
(2)若存在x∈[-3,1],使得f(x)+g(x)>0成立,求a的取值范圍;
(3)若函數(shù)h(x)=
f(x)
g(x)
在定義域內(nèi)的值恒為正數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

導函數(shù)的最大值是原函數(shù)的最小值.
 
(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是雙曲線
x2
4
-
y2
16
=1
右支上任一點,過點P分別作兩條漸近線的垂線,垂足分別為E、F,求|PE|•|PF|的值.

查看答案和解析>>

同步練習冊答案