已知數(shù)列中,

(Ⅰ)求證:是等比數(shù)列,并求的通項(xiàng)公式;

(Ⅱ)數(shù)列滿(mǎn)足,數(shù)列的前n項(xiàng)和為,若不等式對(duì)一切恒成立,求的取值范圍。

 

【答案】

(Ⅰ)詳見(jiàn)解析;;(Ⅱ)

【解析】

試題分析:(Ⅰ)已知數(shù)列中,,像這種分子為單項(xiàng),分母為多項(xiàng)的遞推關(guān)系,常常采用取倒數(shù)法,即,這樣就得到的遞推關(guān)系,求證:是等比數(shù)列,只需證明等于與無(wú)關(guān)的常數(shù)即可,求的通項(xiàng)公式,由前面證明可知是以為首項(xiàng),為公比的等比數(shù)列,故能寫(xiě)出,從而可得;(Ⅱ)若不等式對(duì)一切恒成立,求的取值范圍,首先求出,而是數(shù)列的前n項(xiàng)和,故需求的通項(xiàng)公式,由,可得,這是一個(gè)等差數(shù)列與一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)積所組成的數(shù)列,求它的前n項(xiàng)和,可用錯(cuò)位相減法來(lái)求得,從而求出的取值范圍.

試題解析:(Ⅰ)由知,,又是以為首項(xiàng),為公比的等比數(shù)列,               6分

(Ⅱ),   

,    兩式相減得

                           9分

若n為偶數(shù),則

若n為奇數(shù),則

                           13分

考點(diǎn):等比數(shù)列的判斷,數(shù)列的通項(xiàng)公式的求法,數(shù)列求和.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列ξ中,a1=0,an+1=
12-an
(n∈N*).
(1)計(jì)算a2,a3,a4
(2)猜想數(shù)列{an}的通項(xiàng)公式并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列中,a1=5,a8=19,an=pn+q(p,q為常數(shù))(n∈N*),則a5=
13
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列ξ中,滿(mǎn)足a1=1且an+1=
an
1+nan
,則
lim
n→∞
(n2an)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列中{an}中a1=3,a2=5,其前n項(xiàng)和為Sn,滿(mǎn)足Sn+Sn-2=2Sn-1+2n-1(n≥3)
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
2n-1
anan+1
,Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年天津卷理)已知數(shù)列中,,則         

查看答案和解析>>

同步練習(xí)冊(cè)答案