分析:(1)由Sn+Sn-2=2Sn-1+2n-1(n≥3),得Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),從而可得an=an-1+2n-1(n≥3),利用累加法可求得an.
(2)先表示出bn,然后利用裂項(xiàng)相消法求得Tn,由Tn可得結(jié)論.
解答:解:(1)由
Sn+Sn-2=2Sn-1+2n-1(n≥3),得S
n-S
n-1=S
n-1-S
n-2+2
n-1(n≥3),
∵a
n=S
n-S
n-1,
∴a
n=a
n-1+2
n-1(n≥3),
又∵a
2-a
1=5-3=2,
∴a
n-a
n-1=2
n-1(n≥2),
∴a
n=(a
n-a
n-1)+(a
n-1-a
n-2)+…+(a
2-a
1)+a
1=2
n-1+2
n-2+2
n-3+…+2
1+3
=
+3=2
n+1,
故數(shù)列{a
n}的通項(xiàng)公式為a
n=2
n+1.
(2)∵b
n=
=
=(
-
),
∴T
n=b
1+b
2+b
3+…+b
n=
[(
-
)+(
-
)+…+(
-
)],
=
(
-
)<
.
點(diǎn)評(píng):本題考查由數(shù)列遞推式求數(shù)列通項(xiàng)及數(shù)列求和,裂相消法對(duì)數(shù)列求和是高考考查的重點(diǎn)內(nèi)容,要熟練掌握.