已知數(shù)列中{an}中a1=3,a2=5,其前n項(xiàng)和為Sn,滿足Sn+Sn-2=2Sn-1+2n-1(n≥3)
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
2n-1
anan+1
,Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn
1
6
分析:(1)由Sn+Sn-2=2Sn-1+2n-1(n≥3),得Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),從而可得an=an-1+2n-1(n≥3),利用累加法可求得an
(2)先表示出bn,然后利用裂項(xiàng)相消法求得Tn,由Tn可得結(jié)論.
解答:解:(1)由Sn+Sn-2=2Sn-1+2n-1(n≥3),得Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),
∵an=Sn-Sn-1
∴an=an-1+2n-1(n≥3),
又∵a2-a1=5-3=2,
∴an-an-1=2n-1(n≥2),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1+2n-2+2n-3+…+21+3
=
2(1-2n-1)
1-2
+3=2n+1,
故數(shù)列{an}的通項(xiàng)公式為an=2n+1.
(2)∵bn=
2n-1
anan+1
=
2n-1
(2n+1)(2n+1+1)
=(
1
2n+1
-
1
2n+1+1
),
∴Tn=b1+b2+b3+…+bn
=
1
2
[(
1
3
-
1
5
)+(
1
5
-
1
9
)+…+(
1
2n+1
-
1
2n+1+1
)],
=
1
2
1
3
-
1
2n+1+1
)<
1
6
點(diǎn)評(píng):本題考查由數(shù)列遞推式求數(shù)列通項(xiàng)及數(shù)列求和,裂相消法對(duì)數(shù)列求和是高考考查的重點(diǎn)內(nèi)容,要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2+
4
3n-1
(n∈N*).
(1)求數(shù)列{an}的最大項(xiàng);
(2)設(shè)bn=
an+p
an-2
,試確定實(shí)常數(shù)p,使得{bn}為等比數(shù)列;
(3)設(shè)m,n,p∈N*,m<n<p,問(wèn):數(shù)列{an}中是否存在三項(xiàng)am,an,ap,使數(shù)列am,an,ap是等差數(shù)列?如果存在,求出這三項(xiàng);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},且x=
t
是函數(shù)f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一個(gè)極值點(diǎn).?dāng)?shù)列{an}中a1=t,a2=t2(t>0且t≠1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=2(1-
1
an
)
,當(dāng)t=2時(shí),數(shù)列{bn}的前n項(xiàng)和為Sn,求使Sn>2010的n的最小值;
(3)若cn=
3nlogtan
3n-1
,證明:
c2
2
c3
3
cn
n
4
3
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•龍巖二模)已知數(shù)列{an}滿足an=an+1+4,a18+a20=12,等比數(shù)列{bn}的首項(xiàng)為2,公比為q.
(Ⅰ)若q=3,問(wèn)b3等于數(shù)列{an}中的第幾項(xiàng)?
(Ⅱ)數(shù)列{an}和{bn}的前n項(xiàng)和分別記為Sn和Tn,Sn的最大值為M,當(dāng)q=2時(shí),試比較M與T9的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•昌平區(qū)二模)已知數(shù)列{an}滿足a1=
2
5
,且對(duì)任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(Ⅰ)求證:數(shù)列{
1
an
}
為等差數(shù)列;
(Ⅱ)試問(wèn)數(shù)列{an}中ak-ak+1(k∈N*)是否仍是{an}中的項(xiàng)?如果是,請(qǐng)指出是數(shù)列的第幾項(xiàng);如果不是,請(qǐng)說(shuō)明理由.
(Ⅲ)令bn=
2
3
(
1
an
+5)
,證明:對(duì)任意n∈N*,都有不等式2bnbn2成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案