精英家教網 > 高中數學 > 題目詳情
直線與曲線交點的個數是
A.0 B.1C.2D.3
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)在平面直角坐標系中,已知,),,O為坐標原點,若實數使向量,滿足:,設點P的軌跡為
(Ⅰ)求的方程,并判斷是怎樣的曲線;
(Ⅱ)當時,過點且斜率為1的直線與相交的另一個交點為,能否在直線上找到一點,恰使為正三角形?請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
已知兩定點,若點P滿足。
(1)求點P的軌跡及其方程。
(2)直線與點P的軌跡交于A、B兩點,若,且曲線E上存在點C,使,求實數

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)已知點(x, y)是曲線C上任意一點,將此點的縱坐標變?yōu)樵瓉淼?倍,對應的橫坐標不變,得到的點滿足方程;定點M(2,1),平行于OM的直線在y軸上的截距為m(m≠0),直線與曲線C交于A、B兩個不同點.
(1)求曲線的方程;
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓上的動點,點Q在NP上,點G在MP上,且滿足.
(I)求點G的軌跡C的方程;
(II)過點(2,0)作直線l,與曲線C交于A、B兩點,O是坐標原點,設 是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓為圓上一動點,點上,點上,且滿足的軌跡為曲線
(1)求曲線的方程;
(2)若直線與(1)中所求點的軌跡交于不同兩點是坐
標原點,且,求△的面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若直線y=x+b與曲線有公共點,則b的取值范圍是
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如右圖是高爾頓板的改造裝置,當小球從自由下落時,進入槽口處的概率為  
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線的焦距為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案