已知圓為圓上一動點,點上,點上,且滿足的軌跡為曲線
(1)求曲線的方程;
(2)若直線與(1)中所求點的軌跡交于不同兩點是坐
標原點,且,求△的面積的取值范圍.
(1)(2)
解:(1),
所以為線段的垂直平分線,

所以動點的軌跡是以,為焦點的橢圓, 
且長軸長為,焦距,所以,   
, 
曲線E的方程為.                                                 
(2)設F(x1,y1)H(x2,y2),則由
消去y得


                      
又點到直線的距離,[
  
[
, 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)設橢圓的上頂點為,橢圓上兩點軸上的射影分別為左焦點和右焦點,直線的斜率為,過點且與垂直的直線與軸交于點,的外接圓為圓
(1)求橢圓的離心率;
(2)直線與圓相交于兩點,且,求橢圓方程;
(3)設點在橢圓C內(nèi)部,若橢圓C上的點到點N的最遠距離不大于,求橢圓C的短軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知橢圓的兩焦點和短軸的兩端點正好是一正方形的四個頂點,且焦點到橢圓上一點的最近距離為.

(1)求橢圓的標準方程;
(2)設P是橢圓上任一點,AB 是圓C:
的任一條直徑,求
最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

動點在正方體的面及其邊界運動,且到棱與棱的距離相等,則動點的軌跡是(  )
A.一條線段B.一段圓弧C.一段橢圓弧D.一段拋物線弧

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則點的軌跡是(      )
圓     橢圓              雙曲線      拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與曲線交點的個數(shù)是
A.0 B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程所表示的曲線的對稱性是  (   )
A.關于軸對稱B.關于軸對稱
C.關于直線對稱D.關于原點對稱

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線與橢圓)的離心率之積大于1,則以為邊長的三角形一定是(  )
A 等腰三角形        B 銳角三角形      C 直角三角形     D 鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是橢圓的長軸,若把長軸2010等分,過每個分點作 的垂線,交橢圓的上半部分于為橢圓的左焦點,則的值是                    (    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案