解:由相似三角形知,,,
∴。
(1),
∴,在上單調(diào)遞減,
∴時(shí),最小,時(shí),最小,
∴,∴。
(2)當(dāng)時(shí),,∴,∴,
∵,
∴是圓的直徑,圓心是的中點(diǎn),
∴在y軸上截得的弦長就是直徑,∴=6,
又,
∴,
∴,圓心Q(0,1),半徑為3,。
(3)橢圓方程是,右準(zhǔn)線方程為,
∵直線AM,AN是圓Q的兩條切線,
∴切點(diǎn)M,N在以AQ為直徑的圓上。
設(shè)A點(diǎn)坐標(biāo)為,
∴該圓方程為,
∴直線MN是兩圓的公共弦,兩圓方程相減,得,
這就是直線MN的方程,
該直線化為:,
∴,∴直線MN必過定點(diǎn)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江蘇揚(yáng)州中學(xué)高二上學(xué)期12月月考數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的左右兩焦點(diǎn)分別為,是橢圓上一點(diǎn),且在軸上方,.
(1)求橢圓的離心率的取值范圍;
(2)當(dāng)取最大值時(shí),過的圓的截軸的線段長為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準(zhǔn)線上任一點(diǎn)引圓的兩條切線,切點(diǎn)分別為.試探究直線是否過定點(diǎn)?若過定點(diǎn),請求出該定點(diǎn);否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年陜西省咸陽市禮泉一中高三5月最后一次預(yù)測數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省蘇州中學(xué)高三數(shù)學(xué)能力基礎(chǔ)訓(xùn)練試卷2(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com