【題目】已知{an}是遞增的等差數(shù)列,前n項和為Sn , a1=1,且a1 , a2 , S3成等比數(shù)列.
(1)求an及Sn;
(2)求數(shù)列{ }的前n項和Tn .
【答案】
(1)解:設{an}的公差為d,(d>0),
∵a1,a2,S3成等比數(shù)列,∴ ,即(1+d)2=3+3d,
又d>0,得d=2,
∴an=1+(n﹣1)×2=2n﹣1,
∴
(2)解: = = = ,)
∴數(shù)列{ }的前n項和:
Tn= (1﹣ )= =
【解析】(1)由a1 , a2 , S3成等比數(shù)列,求出公差,由此能求出an及Sn . (2)由 = = = ,利用列舉法能求出數(shù)列{ }的前n項和.
【考點精析】關于本題考查的等差數(shù)列的通項公式(及其變式)和數(shù)列的前n項和,需要了解通項公式:或;數(shù)列{an}的前n項和sn與通項an的關系才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[0,3]上單調(diào)遞增,在區(qū)間[3,+∞)上單調(diào)遞減,且滿足f(﹣4)=f(1)=0,則不等式x3f(x)<0的解集是( )
A.(﹣4,﹣1)∪(1,4)
B.(﹣∞,﹣4)∪(﹣1,1)∪(3,+∞)
C.(﹣∞,﹣4)∪(﹣1,0)∪(1,4)
D.(﹣4,﹣1)∪(0,1)∪(4,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)= .
(1)判斷函數(shù)f(x)的奇偶性并證明;
(2)證明f(x)是定義域內(nèi)的增函數(shù);
(3)解不等式f(1﹣m)+f(1﹣m2)>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3ax+2(a∈R).
(1)當a=1時,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是( )
A.y=
B.y=x2
C.y=x3
D.y=sinx
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的個數(shù)有( )
①函數(shù)f(x)=lg(2x﹣1)的值域為R;
②若( )a>( )b , 則a<b;
③已知f(x)= ,則f[f(0)]=1;
④已知f(1)<f(2)<f(3)<…<f(2016),則f(x)在[1,2016]上是增函數(shù).
A.0個
B.1個
C.2 個
D.3個Q
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知具有相關關系的兩個變量之間的幾組數(shù)據(jù)如下表所示:
(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程,并估計當時, 的值;
(3)將表格中的數(shù)據(jù)看作五個點的坐標,則從這五個點中隨機抽取2個點,求這兩個點都在直線的右下方的概率.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lg 的定義域為集合A,函數(shù)g(x)= 的定義域為集合B.
(1)求集合A,B;
(2)若AB,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù), .
(1)當 (為自然對數(shù)的底數(shù))時,求曲線在點處的切線方程;
(2)討論函數(shù)的零點的個數(shù);
(3)若對任意, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com